#include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/event_groups.h" #include "freertos/timers.h" #include "esp_system.h" #include "esp_wifi.h" #include "esp_event.h" #include "esp_log.h" #include "esp_http_server.h" #include "esp_task_wdt.h" #include "nvs_flash.h" #include "driver/gpio.h" #include "driver/ledc.h" #include "cJSON.h" // WiFi credentials - CHANGE THESE TO YOUR NETWORK #define WIFI_SSID "GL-AXT1800-0c2" #define WIFI_PASS "CR7W25FM8S" #define WIFI_MAXIMUM_RETRY 5 // Pin definitions #define LED_PIN GPIO_NUM_13 #define MOTOR_R_EN GPIO_NUM_18 #define MOTOR_L_EN GPIO_NUM_19 #define PWM_R_PIN GPIO_NUM_21 #define PWM_L_PIN GPIO_NUM_22 // PWM configuration #define PWM_FREQUENCY 1000 #define PWM_RESOLUTION LEDC_TIMER_8_BIT #define PWM_R_CHANNEL LEDC_CHANNEL_0 #define PWM_L_CHANNEL LEDC_CHANNEL_1 // Motor ramping configuration #define RAMP_STEP_MS 50 // Time between ramp steps (milliseconds) #define RAMP_STEP_SIZE 5 // PWM duty change per step (0-255) #define MIN_MOTOR_SPEED 10 // Minimum speed to overcome motor inertia // Watchdog configuration #define WATCHDOG_TIMEOUT_S 10 // Watchdog timeout in seconds static const char* TAG = "HTTP_MOTOR"; // WiFi event group static EventGroupHandle_t s_wifi_event_group; #define WIFI_CONNECTED_BIT BIT0 #define WIFI_FAIL_BIT BIT1 static int s_retry_num = 0; // Motor control typedef enum { MOTOR_OFF, MOTOR_EXHAUST, MOTOR_INTAKE } motor_mode_t; typedef struct { motor_mode_t mode; int target_speed; int current_speed; bool ramping; TimerHandle_t ramp_timer; } motor_state_t; static motor_state_t motor_state = { .mode = MOTOR_OFF, .target_speed = 0, .current_speed = 0, .ramping = false, .ramp_timer = NULL }; // HTTP server handle static httpd_handle_t server = NULL; // Task handles for watchdog static TaskHandle_t main_task_handle = NULL; // Compact HTML web page for control static const char* html_page = "Maxxfan

Maxxfan Controller

" "

Status

Mode: OFF

Speed: 0%

" "

Target: 0%

Ramping...
" "
Error
Connecting...
" "

Fan Control

" "" "
" "

Speed Control

" "" "" "
" ""; // Forward declarations static void motor_ramp_timer_callback(TimerHandle_t xTimer); static void apply_motor_pwm(int speed_percent); // Initialize watchdog timer void init_watchdog(void) { ESP_LOGI(TAG, "Setting up watchdog monitoring..."); // Get current task handle and add to watchdog main_task_handle = xTaskGetCurrentTaskHandle(); esp_err_t result = esp_task_wdt_add(main_task_handle); if (result == ESP_OK) { ESP_LOGI(TAG, "Main task added to watchdog monitoring"); } else if (result == ESP_ERR_INVALID_ARG) { ESP_LOGI(TAG, "Task already monitored by watchdog"); } else { ESP_LOGW(TAG, "Watchdog not available: %s", esp_err_to_name(result)); main_task_handle = NULL; // Disable watchdog feeding } } // Feed the watchdog void feed_watchdog(void) { if (main_task_handle != NULL) { esp_err_t result = esp_task_wdt_reset(); if (result != ESP_OK) { ESP_LOGD(TAG, "Watchdog reset failed: %s", esp_err_to_name(result)); } } } // WiFi event handler static void event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) { esp_wifi_connect(); } else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) { if (s_retry_num < WIFI_MAXIMUM_RETRY) { esp_wifi_connect(); s_retry_num++; ESP_LOGI(TAG, "retry to connect to the AP"); } else { xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT); } ESP_LOGI(TAG, "connect to the AP fail"); } else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) { ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data; ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip)); s_retry_num = 0; xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT); } } void configure_gpio_pins(void) { ESP_LOGI(TAG, "Configuring GPIO pins..."); uint64_t pin_mask = (1ULL << LED_PIN) | (1ULL << MOTOR_R_EN) | (1ULL << MOTOR_L_EN); gpio_config_t io_conf = { .pin_bit_mask = pin_mask, .mode = GPIO_MODE_OUTPUT, .pull_up_en = GPIO_PULLUP_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = GPIO_INTR_DISABLE }; gpio_config(&io_conf); gpio_set_level(LED_PIN, 0); gpio_set_level(MOTOR_R_EN, 0); gpio_set_level(MOTOR_L_EN, 0); ESP_LOGI(TAG, "GPIO pins configured"); } void configure_pwm(void) { ESP_LOGI(TAG, "Configuring PWM..."); ledc_timer_config_t timer_conf = { .speed_mode = LEDC_LOW_SPEED_MODE, .timer_num = LEDC_TIMER_0, .duty_resolution = PWM_RESOLUTION, .freq_hz = PWM_FREQUENCY, .clk_cfg = LEDC_AUTO_CLK }; ledc_timer_config(&timer_conf); ledc_channel_config_t channel_conf = { .channel = PWM_R_CHANNEL, .duty = 0, .gpio_num = PWM_R_PIN, .speed_mode = LEDC_LOW_SPEED_MODE, .hpoint = 0, .timer_sel = LEDC_TIMER_0 }; ledc_channel_config(&channel_conf); channel_conf.channel = PWM_L_CHANNEL; channel_conf.gpio_num = PWM_L_PIN; ledc_channel_config(&channel_conf); ESP_LOGI(TAG, "PWM configured"); } // Apply PWM to motor based on current mode and speed static void apply_motor_pwm(int speed_percent) { if (speed_percent < 0) speed_percent = 0; if (speed_percent > 100) speed_percent = 100; uint32_t duty = (speed_percent * 255) / 100; if (motor_state.mode == MOTOR_OFF || speed_percent == 0) { gpio_set_level(LED_PIN, 0); gpio_set_level(MOTOR_R_EN, 0); gpio_set_level(MOTOR_L_EN, 0); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL, 0); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL, 0); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL); } else if (motor_state.mode == MOTOR_EXHAUST) { gpio_set_level(LED_PIN, 1); gpio_set_level(MOTOR_R_EN, 1); gpio_set_level(MOTOR_L_EN, 0); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL, duty); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL, 0); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL); } else if (motor_state.mode == MOTOR_INTAKE) { gpio_set_level(LED_PIN, 1); gpio_set_level(MOTOR_R_EN, 0); gpio_set_level(MOTOR_L_EN, 1); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL, 0); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL, duty); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL); } } // Motor ramp timer callback static void motor_ramp_timer_callback(TimerHandle_t xTimer) { if (!motor_state.ramping) { return; } int speed_diff = motor_state.target_speed - motor_state.current_speed; if (abs(speed_diff) <= RAMP_STEP_SIZE) { // Close enough to target, finish ramping motor_state.current_speed = motor_state.target_speed; motor_state.ramping = false; // Stop the timer xTimerStop(motor_state.ramp_timer, 0); ESP_LOGI(TAG, "Ramping complete - Final speed: %d%%", motor_state.current_speed); } else { // Continue ramping if (speed_diff > 0) { motor_state.current_speed += RAMP_STEP_SIZE; } else { motor_state.current_speed -= RAMP_STEP_SIZE; } ESP_LOGD(TAG, "Ramping: %d%% -> %d%% (target: %d%%)", motor_state.current_speed - (speed_diff > 0 ? RAMP_STEP_SIZE : -RAMP_STEP_SIZE), motor_state.current_speed, motor_state.target_speed); } apply_motor_pwm(motor_state.current_speed); } // Initialize motor ramping system void init_motor_ramping(void) { motor_state.ramp_timer = xTimerCreate( "MotorRampTimer", // Timer name pdMS_TO_TICKS(RAMP_STEP_MS), // Timer period pdTRUE, // Auto-reload (void*)0, // Timer ID motor_ramp_timer_callback // Callback function ); if (motor_state.ramp_timer == NULL) { ESP_LOGE(TAG, "Failed to create motor ramp timer"); } else { ESP_LOGI(TAG, "Motor ramping system initialized"); } } void set_motor_speed(motor_mode_t mode, int speed_percent) { if (speed_percent < 0) speed_percent = 0; if (speed_percent > 100) speed_percent = 100; // Stop any current ramping if (motor_state.ramping) { xTimerStop(motor_state.ramp_timer, 0); motor_state.ramping = false; } motor_mode_t previous_mode = motor_state.mode; motor_state.mode = mode; motor_state.target_speed = speed_percent; ESP_LOGI(TAG, "Motor command: %s - Target: %d%% (Current: %d%%)", mode == MOTOR_OFF ? "OFF" : (mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE"), speed_percent, motor_state.current_speed); // Handle different scenarios if (mode == MOTOR_OFF || speed_percent == 0) { // Immediate stop motor_state.current_speed = 0; motor_state.target_speed = 0; apply_motor_pwm(0); ESP_LOGI(TAG, "Motor stopped immediately"); } else if (previous_mode == MOTOR_OFF || motor_state.current_speed == 0) { // Starting from stop - apply minimum speed first, then ramp int start_speed = (speed_percent < MIN_MOTOR_SPEED) ? speed_percent : MIN_MOTOR_SPEED; motor_state.current_speed = start_speed; apply_motor_pwm(start_speed); if (speed_percent > start_speed) { // Start ramping to target motor_state.ramping = true; xTimerStart(motor_state.ramp_timer, 0); ESP_LOGI(TAG, "Motor starting at %d%%, ramping to %d%%", start_speed, speed_percent); } else { ESP_LOGI(TAG, "Motor started at %d%% (no ramping needed)", start_speed); } } else if (previous_mode != mode) { // Direction change - ramp down to minimum, change direction, then ramp up motor_state.target_speed = MIN_MOTOR_SPEED; motor_state.ramping = true; xTimerStart(motor_state.ramp_timer, 0); ESP_LOGI(TAG, "Direction change - ramping down first"); // Note: In a real implementation, you might want to implement a state machine // to handle the direction change sequence properly } else { // Same mode, just speed change - ramp to new speed motor_state.ramping = true; xTimerStart(motor_state.ramp_timer, 0); ESP_LOGI(TAG, "Speed change - ramping from %d%% to %d%%", motor_state.current_speed, speed_percent); } } // Helper function to set CORS headers static void set_cors_headers(httpd_req_t *req) { httpd_resp_set_hdr(req, "Access-Control-Allow-Origin", "*"); httpd_resp_set_hdr(req, "Access-Control-Allow-Methods", "GET, POST, OPTIONS"); httpd_resp_set_hdr(req, "Access-Control-Allow-Headers", "Content-Type, Accept"); httpd_resp_set_hdr(req, "Cache-Control", "no-cache"); } // HTTP handler for the main web page static esp_err_t root_get_handler(httpd_req_t *req) { set_cors_headers(req); httpd_resp_set_type(req, "text/html"); httpd_resp_send(req, html_page, HTTPD_RESP_USE_STRLEN); return ESP_OK; } // HTTP handler for fan status (GET /status) static esp_err_t status_get_handler(httpd_req_t *req) { ESP_LOGI(TAG, "Status request - Mode: %d, Current: %d%%, Target: %d%%, Ramping: %s", motor_state.mode, motor_state.current_speed, motor_state.target_speed, motor_state.ramping ? "YES" : "NO"); set_cors_headers(req); httpd_resp_set_type(req, "application/json"); cJSON *json = cJSON_CreateObject(); const char* mode_str = "off"; if (motor_state.mode == MOTOR_EXHAUST) mode_str = "exhaust"; else if (motor_state.mode == MOTOR_INTAKE) mode_str = "intake"; cJSON_AddStringToObject(json, "mode", mode_str); cJSON_AddNumberToObject(json, "current_speed", motor_state.current_speed); cJSON_AddNumberToObject(json, "target_speed", motor_state.target_speed); cJSON_AddBoolToObject(json, "ramping", motor_state.ramping); char *json_string = cJSON_Print(json); if (json_string) { httpd_resp_send(req, json_string, strlen(json_string)); free(json_string); } else { httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "JSON creation failed"); } cJSON_Delete(json); return ESP_OK; } // HTTP handler for fan control (POST /fan) static esp_err_t fan_post_handler(httpd_req_t *req) { char buf[200]; int ret, remaining = req->content_len; if (remaining >= sizeof(buf)) { httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Content too long"); return ESP_FAIL; } ret = httpd_req_recv(req, buf, remaining); if (ret <= 0) { if (ret == HTTPD_SOCK_ERR_TIMEOUT) { httpd_resp_send_err(req, HTTPD_408_REQ_TIMEOUT, "Request timeout"); } return ESP_FAIL; } buf[ret] = '\0'; ESP_LOGI(TAG, "Received POST data: %s", buf); cJSON *json = cJSON_Parse(buf); if (json == NULL) { ESP_LOGE(TAG, "JSON parsing failed"); httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Invalid JSON"); return ESP_FAIL; } cJSON *mode_json = cJSON_GetObjectItem(json, "mode"); cJSON *speed_json = cJSON_GetObjectItem(json, "speed"); if (!cJSON_IsString(mode_json) || (!cJSON_IsNumber(speed_json) && !cJSON_IsString(speed_json))) { ESP_LOGE(TAG, "JSON parsing failed - mode: %s, speed: %s", mode_json ? (cJSON_IsString(mode_json) ? mode_json->valuestring : "not_string") : "null", speed_json ? (cJSON_IsNumber(speed_json) ? "number" : (cJSON_IsString(speed_json) ? speed_json->valuestring : "not_number_or_string")) : "null"); cJSON_Delete(json); httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Missing mode or speed"); return ESP_FAIL; } const char* mode_str = mode_json->valuestring; int speed; // Handle both number and string speed values if (cJSON_IsNumber(speed_json)) { speed = (int)speed_json->valuedouble; } else if (cJSON_IsString(speed_json)) { speed = atoi(speed_json->valuestring); } else { speed = 0; } motor_mode_t mode = MOTOR_OFF; if (strcmp(mode_str, "exhaust") == 0) { mode = MOTOR_EXHAUST; } else if (strcmp(mode_str, "intake") == 0) { mode = MOTOR_INTAKE; } ESP_LOGI(TAG, "HTTP Request: mode=%s, speed=%d", mode_str, speed); set_motor_speed(mode, speed); cJSON_Delete(json); // Send response with updated status return status_get_handler(req); } // HTTP handler for OPTIONS requests (CORS preflight) static esp_err_t options_handler(httpd_req_t *req) { set_cors_headers(req); httpd_resp_set_status(req, "200 OK"); httpd_resp_send(req, NULL, 0); return ESP_OK; } // Start HTTP server static httpd_handle_t start_webserver(void) { httpd_config_t config = HTTPD_DEFAULT_CONFIG(); config.max_uri_handlers = 15; config.recv_wait_timeout = 10; config.send_wait_timeout = 10; ESP_LOGI(TAG, "Starting server on port: '%d'", config.server_port); if (httpd_start(&server, &config) == ESP_OK) { ESP_LOGI(TAG, "Registering URI handlers"); // Root handler httpd_uri_t root = { .uri = "/", .method = HTTP_GET, .handler = root_get_handler, .user_ctx = NULL }; httpd_register_uri_handler(server, &root); // Status handler httpd_uri_t status = { .uri = "/status", .method = HTTP_GET, .handler = status_get_handler, .user_ctx = NULL }; httpd_register_uri_handler(server, &status); // Fan control handler httpd_uri_t fan = { .uri = "/fan", .method = HTTP_POST, .handler = fan_post_handler, .user_ctx = NULL }; httpd_register_uri_handler(server, &fan); // OPTIONS handler for CORS preflight httpd_uri_t options_status = { .uri = "/status", .method = HTTP_OPTIONS, .handler = options_handler, .user_ctx = NULL }; httpd_register_uri_handler(server, &options_status); httpd_uri_t options_fan = { .uri = "/fan", .method = HTTP_OPTIONS, .handler = options_handler, .user_ctx = NULL }; httpd_register_uri_handler(server, &options_fan); return server; } ESP_LOGI(TAG, "Error starting server!"); return NULL; } void wifi_init_sta(void) { s_wifi_event_group = xEventGroupCreate(); ESP_ERROR_CHECK(esp_netif_init()); ESP_ERROR_CHECK(esp_event_loop_create_default()); esp_netif_create_default_wifi_sta(); wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT(); ESP_ERROR_CHECK(esp_wifi_init(&cfg)); esp_event_handler_instance_t instance_any_id; esp_event_handler_instance_t instance_got_ip; ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL, &instance_any_id)); ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL, &instance_got_ip)); wifi_config_t wifi_config = { .sta = { .ssid = WIFI_SSID, .password = WIFI_PASS, .threshold.authmode = WIFI_AUTH_WPA2_PSK, .pmf_cfg = { .capable = true, .required = false }, }, }; ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA)); ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config)); ESP_ERROR_CHECK(esp_wifi_start()); ESP_LOGI(TAG, "wifi_init_sta finished."); EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group, WIFI_CONNECTED_BIT | WIFI_FAIL_BIT, pdFALSE, pdFALSE, portMAX_DELAY); if (bits & WIFI_CONNECTED_BIT) { ESP_LOGI(TAG, "connected to ap SSID:%s", WIFI_SSID); } else if (bits & WIFI_FAIL_BIT) { ESP_LOGI(TAG, "Failed to connect to SSID:%s", WIFI_SSID); } else { ESP_LOGE(TAG, "UNEXPECTED EVENT"); } } // Main application task with watchdog feeding void main_task(void *pvParameters) { ESP_LOGI(TAG, "Main task started"); while (1) { feed_watchdog(); vTaskDelay(pdMS_TO_TICKS(5000)); // Feed watchdog every 5 seconds } } void app_main(void) { ESP_LOGI(TAG, "Starting Maxxfan HTTP Controller with improvements!"); // Initialize NVS esp_err_t ret = nvs_flash_init(); if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) { ESP_ERROR_CHECK(nvs_flash_erase()); ret = nvs_flash_init(); } ESP_ERROR_CHECK(ret); // Initialize watchdog timer init_watchdog(); // Configure hardware configure_gpio_pins(); configure_pwm(); // Initialize motor ramping system init_motor_ramping(); ESP_LOGI(TAG, "Connecting to WiFi network: %s", WIFI_SSID); wifi_init_sta(); // Start HTTP server start_webserver(); ESP_LOGI(TAG, "=== Enhanced Maxxfan Controller Ready! ==="); ESP_LOGI(TAG, "Features: Motor Ramping, Optimized Performance, Real-time Updates"); ESP_LOGI(TAG, "Open your browser and go to: http://[ESP32_IP_ADDRESS]"); ESP_LOGI(TAG, "Check the monitor output above for your IP address"); // Main loop - reset watchdog periodically while (1) { feed_watchdog(); vTaskDelay(pdMS_TO_TICKS(3000)); // Feed every 3 seconds (system default is usually 5s timeout) } }