#include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/event_groups.h" #include "esp_system.h" #include "esp_wifi.h" #include "esp_event.h" #include "esp_log.h" #include "nvs_flash.h" #include "driver/gpio.h" #include "driver/ledc.h" // WiFi credentials - CHANGE THESE TO YOUR NETWORK #define WIFI_SSID "YOUR_WIFI_NAME" #define WIFI_PASS "YOUR_WIFI_PASSWORD" #define WIFI_MAXIMUM_RETRY 5 // Pin definitions (same as before) #define LED_PIN GPIO_NUM_13 #define MOTOR_R_EN GPIO_NUM_18 #define MOTOR_L_EN GPIO_NUM_19 #define PWM_R_PIN GPIO_NUM_21 #define PWM_L_PIN GPIO_NUM_22 // PWM configuration (same as before) #define PWM_FREQUENCY 1000 #define PWM_RESOLUTION LEDC_TIMER_8_BIT #define PWM_R_CHANNEL LEDC_CHANNEL_0 #define PWM_L_CHANNEL LEDC_CHANNEL_1 static const char* TAG = "WIFI_MOTOR"; // WiFi event group static EventGroupHandle_t s_wifi_event_group; #define WIFI_CONNECTED_BIT BIT0 #define WIFI_FAIL_BIT BIT1 static int s_retry_num = 0; // Motor control (same as before) typedef enum { MOTOR_OFF, MOTOR_EXHAUST, MOTOR_INTAKE } motor_mode_t; static motor_mode_t current_mode = MOTOR_OFF; static int current_speed = 0; // WiFi event handler static void event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) { esp_wifi_connect(); } else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) { if (s_retry_num < WIFI_MAXIMUM_RETRY) { esp_wifi_connect(); s_retry_num++; ESP_LOGI(TAG, "retry to connect to the AP"); } else { xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT); } ESP_LOGI(TAG, "connect to the AP fail"); } else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) { ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data; ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip)); s_retry_num = 0; xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT); } } void wifi_init_sta(void) { s_wifi_event_group = xEventGroupCreate(); ESP_ERROR_CHECK(esp_netif_init()); ESP_ERROR_CHECK(esp_event_loop_create_default()); esp_netif_create_default_wifi_sta(); wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT(); ESP_ERROR_CHECK(esp_wifi_init(&cfg)); esp_event_handler_instance_t instance_any_id; esp_event_handler_instance_t instance_got_ip; ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL, &instance_any_id)); ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL, &instance_got_ip)); wifi_config_t wifi_config = { .sta = { .ssid = WIFI_SSID, .password = WIFI_PASS, .threshold.authmode = WIFI_AUTH_WPA2_PSK, .pmf_cfg = { .capable = true, .required = false }, }, }; ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA)); ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config)); ESP_ERROR_CHECK(esp_wifi_start()); ESP_LOGI(TAG, "wifi_init_sta finished."); /* Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum * number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above) */ EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group, WIFI_CONNECTED_BIT | WIFI_FAIL_BIT, pdFALSE, pdFALSE, portMAX_DELAY); /* xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually * happened. */ if (bits & WIFI_CONNECTED_BIT) { ESP_LOGI(TAG, "connected to ap SSID:%s", WIFI_SSID); } else if (bits & WIFI_FAIL_BIT) { ESP_LOGI(TAG, "Failed to connect to SSID:%s", WIFI_SSID); } else { ESP_LOGE(TAG, "UNEXPECTED EVENT"); } } void configure_gpio_pins(void) { ESP_LOGI(TAG, "Configuring GPIO pins..."); uint64_t pin_mask = (1ULL << LED_PIN) | (1ULL << MOTOR_R_EN) | (1ULL << MOTOR_L_EN); gpio_config_t io_conf = { .pin_bit_mask = pin_mask, .mode = GPIO_MODE_OUTPUT, .pull_up_en = GPIO_PULLUP_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = GPIO_INTR_DISABLE }; gpio_config(&io_conf); gpio_set_level(LED_PIN, 0); gpio_set_level(MOTOR_R_EN, 0); gpio_set_level(MOTOR_L_EN, 0); ESP_LOGI(TAG, "GPIO pins configured"); } void configure_pwm(void) { ESP_LOGI(TAG, "Configuring PWM..."); ledc_timer_config_t timer_conf = { .speed_mode = LEDC_LOW_SPEED_MODE, .timer_num = LEDC_TIMER_0, .duty_resolution = PWM_RESOLUTION, .freq_hz = PWM_FREQUENCY, .clk_cfg = LEDC_AUTO_CLK }; ledc_timer_config(&timer_conf); ledc_channel_config_t channel_conf = { .channel = PWM_R_CHANNEL, .duty = 0, .gpio_num = PWM_R_PIN, .speed_mode = LEDC_LOW_SPEED_MODE, .hpoint = 0, .timer_sel = LEDC_TIMER_0 }; ledc_channel_config(&channel_conf); channel_conf.channel = PWM_L_CHANNEL; channel_conf.gpio_num = PWM_L_PIN; ledc_channel_config(&channel_conf); ESP_LOGI(TAG, "PWM configured"); } void set_motor_speed(motor_mode_t mode, int speed_percent) { if (speed_percent < 0) speed_percent = 0; if (speed_percent > 100) speed_percent = 100; current_mode = mode; current_speed = speed_percent; uint32_t duty = (speed_percent * 255) / 100; if (mode == MOTOR_OFF || speed_percent == 0) { ESP_LOGI(TAG, "Motor OFF"); gpio_set_level(LED_PIN, 0); gpio_set_level(MOTOR_R_EN, 0); gpio_set_level(MOTOR_L_EN, 0); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL, 0); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL, 0); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL); } else if (mode == MOTOR_EXHAUST) { ESP_LOGI(TAG, "Motor EXHAUST - Speed: %d%%", speed_percent); gpio_set_level(LED_PIN, 1); gpio_set_level(MOTOR_R_EN, 1); gpio_set_level(MOTOR_L_EN, 0); vTaskDelay(pdMS_TO_TICKS(10)); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL, duty); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL, 0); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL); } else if (mode == MOTOR_INTAKE) { ESP_LOGI(TAG, "Motor INTAKE - Speed: %d%%", speed_percent); gpio_set_level(LED_PIN, 1); gpio_set_level(MOTOR_R_EN, 0); gpio_set_level(MOTOR_L_EN, 1); vTaskDelay(pdMS_TO_TICKS(10)); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL, 0); ledc_set_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL, duty); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_R_CHANNEL); ledc_update_duty(LEDC_LOW_SPEED_MODE, PWM_L_CHANNEL); } } // Simple demo task that runs once WiFi is connected void motor_demo_task(void *pvParameters) { ESP_LOGI(TAG, "Motor demo task started - waiting for WiFi..."); // Wait for WiFi connection EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group, WIFI_CONNECTED_BIT, pdFALSE, pdFALSE, portMAX_DELAY); if (bits & WIFI_CONNECTED_BIT) { ESP_LOGI(TAG, "WiFi connected! Starting motor demo..."); while(1) { ESP_LOGI(TAG, "=== WiFi Motor Demo Sequence ==="); // Short demo since we have WiFi now set_motor_speed(MOTOR_EXHAUST, 50); vTaskDelay(pdMS_TO_TICKS(3000)); set_motor_speed(MOTOR_INTAKE, 75); vTaskDelay(pdMS_TO_TICKS(3000)); set_motor_speed(MOTOR_OFF, 0); vTaskDelay(pdMS_TO_TICKS(5000)); } } } void app_main(void) { ESP_LOGI(TAG, "Starting WiFi + Motor Control!"); // Initialize NVS (needed for WiFi) esp_err_t ret = nvs_flash_init(); if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) { ESP_ERROR_CHECK(nvs_flash_erase()); ret = nvs_flash_init(); } ESP_ERROR_CHECK(ret); // Configure hardware configure_gpio_pins(); configure_pwm(); ESP_LOGI(TAG, "Connecting to WiFi network: %s", WIFI_SSID); wifi_init_sta(); // Create motor demo task xTaskCreate(motor_demo_task, "motor_demo", 4096, NULL, 5, NULL); ESP_LOGI(TAG, "Setup complete! Motor controllable via WiFi."); }