Refactor motor control

This commit is contained in:
2025-07-09 17:29:27 -06:00
parent 15f8d41656
commit f3fb4f4ac8
4 changed files with 670 additions and 443 deletions

View File

@ -1,2 +1,2 @@
idf_component_register(SRCS "maxxfan-controller.c" idf_component_register(SRCS "maxxfan-controller.c" "motor_control.c"
INCLUDE_DIRS ".") INCLUDE_DIRS ".")

View File

@ -3,7 +3,6 @@
#include "freertos/FreeRTOS.h" #include "freertos/FreeRTOS.h"
#include "freertos/task.h" #include "freertos/task.h"
#include "freertos/event_groups.h" #include "freertos/event_groups.h"
#include "freertos/timers.h"
#include "esp_system.h" #include "esp_system.h"
#include "esp_wifi.h" #include "esp_wifi.h"
#include "esp_event.h" #include "esp_event.h"
@ -12,66 +11,16 @@
#include "esp_task_wdt.h" #include "esp_task_wdt.h"
#include "nvs_flash.h" #include "nvs_flash.h"
#include "nvs.h" #include "nvs.h"
#include "driver/gpio.h"
#include "driver/ledc.h"
#include "cJSON.h" #include "cJSON.h"
// Project configuration // Project modules
#include "config.h" #include "config.h"
#include "motor_control.h"
// WiFi event group // WiFi event group
static EventGroupHandle_t s_wifi_event_group; static EventGroupHandle_t s_wifi_event_group;
static int s_retry_num = 0; static int s_retry_num = 0;
// Motor control
typedef enum {
MOTOR_OFF,
MOTOR_EXHAUST,
MOTOR_INTAKE
} motor_mode_t;
typedef enum {
MOTOR_STATE_IDLE, // Motor is off or running normally
MOTOR_STATE_RAMPING, // Motor is ramping up/down
MOTOR_STATE_STOPPING, // Motor is stopping for direction change
MOTOR_STATE_COOLDOWN, // Motor is in cooldown period
MOTOR_STATE_RESTARTING // Motor is restarting after cooldown
} motor_state_enum_t;
typedef struct {
motor_mode_t mode;
motor_mode_t pending_mode; // Mode to switch to after cooldown
int target_speed;
int pending_speed; // Speed to set after cooldown
int current_speed;
motor_state_enum_t state;
bool ramping;
TimerHandle_t ramp_timer;
TimerHandle_t cooldown_timer;
uint32_t cooldown_remaining_ms; // For status reporting
// State preservation
motor_mode_t last_on_mode; // Last non-OFF mode for ON button
int last_on_speed; // Last non-zero speed for ON button
bool user_turned_off; // Track if user manually turned off
} motor_state_t;
static motor_state_t motor_state = {
.mode = MOTOR_OFF,
.pending_mode = MOTOR_OFF,
.target_speed = 0,
.pending_speed = 0,
.current_speed = 0,
.state = MOTOR_STATE_IDLE,
.ramping = false,
.ramp_timer = NULL,
.cooldown_timer = NULL,
.cooldown_remaining_ms = 0,
.last_on_mode = MOTOR_EXHAUST, // Default to exhaust for ON button
.last_on_speed = 50, // Default to 50% for ON button
.user_turned_off = false
};
// HTTP server handle // HTTP server handle
static httpd_handle_t server = NULL; static httpd_handle_t server = NULL;
@ -136,14 +85,9 @@ static const char* html_page =
"document.addEventListener('DOMContentLoaded',function(){getStatus();startUpdates()})</script></body></html>"; "document.addEventListener('DOMContentLoaded',function(){getStatus();startUpdates()})</script></body></html>";
// Forward declarations // Forward declarations
static void motor_ramp_timer_callback(TimerHandle_t xTimer);
static void motor_cooldown_timer_callback(TimerHandle_t xTimer);
static void apply_motor_pwm(int speed_percent);
static void start_motor_operation(motor_mode_t mode, int speed_percent);
static esp_err_t save_motor_state_to_nvs(void); static esp_err_t save_motor_state_to_nvs(void);
static esp_err_t load_motor_state_from_nvs(void); static esp_err_t load_motor_state_from_nvs(void);
static bool is_watchdog_reset(void); static bool is_watchdog_reset(void);
static void save_last_on_state(motor_mode_t mode, int speed);
// Initialize watchdog timer // Initialize watchdog timer
void init_watchdog(void) { void init_watchdog(void) {
@ -194,29 +138,36 @@ static esp_err_t save_motor_state_to_nvs(void) {
return err; return err;
} }
// Get current motor state
const motor_state_t* state = motor_get_state();
motor_mode_t last_on_mode;
int last_on_speed;
motor_get_last_on_state(&last_on_mode, &last_on_speed);
bool user_turned_off = motor_get_user_turned_off();
ESP_LOGI(SYSTEM_TAG, "=== SAVING STATE TO NVS ==="); ESP_LOGI(SYSTEM_TAG, "=== SAVING STATE TO NVS ===");
ESP_LOGI(SYSTEM_TAG, "Mode: %d, Speed: %d%%, Last ON: %d@%d%%, User OFF: %s", ESP_LOGI(SYSTEM_TAG, "Mode: %d, Speed: %d%%, Last ON: %d@%d%%, User OFF: %s",
motor_state.mode, motor_state.target_speed, state->mode, state->target_speed,
motor_state.last_on_mode, motor_state.last_on_speed, last_on_mode, last_on_speed,
motor_state.user_turned_off ? "YES" : "NO"); user_turned_off ? "YES" : "NO");
// Save current motor state // Save current motor state
err = nvs_set_u8(nvs_handle, NVS_KEY_MODE, (uint8_t)motor_state.mode); err = nvs_set_u8(nvs_handle, NVS_KEY_MODE, (uint8_t)state->mode);
if (err == ESP_OK) { if (err == ESP_OK) {
err = nvs_set_u8(nvs_handle, NVS_KEY_SPEED, (uint8_t)motor_state.target_speed); err = nvs_set_u8(nvs_handle, NVS_KEY_SPEED, (uint8_t)state->target_speed);
} }
// Save last ON state // Save last ON state
if (err == ESP_OK) { if (err == ESP_OK) {
err = nvs_set_u8(nvs_handle, NVS_KEY_LAST_ON_MODE, (uint8_t)motor_state.last_on_mode); err = nvs_set_u8(nvs_handle, NVS_KEY_LAST_ON_MODE, (uint8_t)last_on_mode);
} }
if (err == ESP_OK) { if (err == ESP_OK) {
err = nvs_set_u8(nvs_handle, NVS_KEY_LAST_ON_SPEED, (uint8_t)motor_state.last_on_speed); err = nvs_set_u8(nvs_handle, NVS_KEY_LAST_ON_SPEED, (uint8_t)last_on_speed);
} }
// Save power state (whether user turned off manually) // Save power state (whether user turned off manually)
if (err == ESP_OK) { if (err == ESP_OK) {
err = nvs_set_u8(nvs_handle, NVS_KEY_POWER_STATE, motor_state.user_turned_off ? 1 : 0); err = nvs_set_u8(nvs_handle, NVS_KEY_POWER_STATE, user_turned_off ? 1 : 0);
} }
if (err == ESP_OK) { if (err == ESP_OK) {
@ -266,13 +217,13 @@ static esp_err_t load_motor_state_from_nvs(void) {
if (stored_last_mode < MOTOR_EXHAUST || stored_last_mode > MOTOR_INTAKE) stored_last_mode = MOTOR_EXHAUST; if (stored_last_mode < MOTOR_EXHAUST || stored_last_mode > MOTOR_INTAKE) stored_last_mode = MOTOR_EXHAUST;
if (!IS_VALID_SPEED(stored_last_speed)) stored_last_speed = 50; if (!IS_VALID_SPEED(stored_last_speed)) stored_last_speed = 50;
motor_state.last_on_mode = (motor_mode_t)stored_last_mode; // Set the last ON state in motor control module
motor_state.last_on_speed = stored_last_speed; motor_set_last_on_state((motor_mode_t)stored_last_mode, stored_last_speed);
motor_state.user_turned_off = (stored_power_state == 1); motor_set_user_turned_off(stored_power_state == 1);
ESP_LOGI(SYSTEM_TAG, "Loaded state from NVS - Mode: %d, Speed: %d%%, Last ON: %d@%d%%, User OFF: %s", ESP_LOGI(SYSTEM_TAG, "Loaded state from NVS - Mode: %d, Speed: %d%%, Last ON: %d@%d%%, User OFF: %s",
stored_mode, stored_speed, motor_state.last_on_mode, motor_state.last_on_speed, stored_mode, stored_speed, stored_last_mode, stored_last_speed,
motor_state.user_turned_off ? "YES" : "NO"); stored_power_state ? "YES" : "NO");
// Check reset reason to decide whether to restore state // Check reset reason to decide whether to restore state
bool was_watchdog_reset = is_watchdog_reset(); bool was_watchdog_reset = is_watchdog_reset();
@ -293,34 +244,28 @@ static esp_err_t load_motor_state_from_nvs(void) {
reset_reason == ESP_RST_SDIO ? "SDIO" : "UNKNOWN"); reset_reason == ESP_RST_SDIO ? "SDIO" : "UNKNOWN");
ESP_LOGI(SYSTEM_TAG, "Watchdog reset: %s", was_watchdog_reset ? "YES" : "NO"); ESP_LOGI(SYSTEM_TAG, "Watchdog reset: %s", was_watchdog_reset ? "YES" : "NO");
ESP_LOGI(SYSTEM_TAG, "Stored mode: %d, speed: %d", stored_mode, stored_speed); ESP_LOGI(SYSTEM_TAG, "Stored mode: %d, speed: %d", stored_mode, stored_speed);
ESP_LOGI(SYSTEM_TAG, "User turned off: %s", motor_state.user_turned_off ? "YES" : "NO"); ESP_LOGI(SYSTEM_TAG, "User turned off: %s", stored_power_state ? "YES" : "NO");
ESP_LOGI(SYSTEM_TAG, "===================="); ESP_LOGI(SYSTEM_TAG, "====================");
// Store the restored state for potential motor restoration
if (was_watchdog_reset) { if (was_watchdog_reset) {
// True watchdog reset (TASK_WDT or INT_WDT) - don't restore state, start fresh // True watchdog reset (TASK_WDT or INT_WDT) - don't restore state, start fresh
ESP_LOGI(SYSTEM_TAG, "⚠️ TRUE watchdog reset detected - starting in OFF state for safety"); ESP_LOGI(SYSTEM_TAG, "⚠️ TRUE watchdog reset detected - starting in OFF state for safety");
motor_state.mode = MOTOR_OFF; // Motor module is already initialized in OFF state, no action needed
motor_state.target_speed = 0; } else if (stored_power_state) {
motor_state.current_speed = 0;
motor_state.user_turned_off = false; // Reset user off flag
} else if (motor_state.user_turned_off) {
// User manually turned off - stay off // User manually turned off - stay off
ESP_LOGI(SYSTEM_TAG, "🔒 User had turned off manually - staying OFF"); ESP_LOGI(SYSTEM_TAG, "🔒 User had turned off manually - staying OFF");
motor_state.mode = MOTOR_OFF; // Motor module is already initialized in OFF state, no action needed
motor_state.target_speed = 0;
motor_state.current_speed = 0;
} else if (stored_mode != MOTOR_OFF && stored_speed > 0) { } else if (stored_mode != MOTOR_OFF && stored_speed > 0) {
// Normal power loss or general WDT (which can be power-related) - restore previous state // Normal power loss or general WDT (which can be power-related) - restore previous state
ESP_LOGI(SYSTEM_TAG, "🔋 Power restored - will resume previous state: %s @ %d%%", ESP_LOGI(SYSTEM_TAG, "🔋 Power restored - will resume previous state: %s @ %d%%",
stored_mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE", stored_speed); stored_mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE", stored_speed);
motor_state.mode = (motor_mode_t)stored_mode;
motor_state.target_speed = stored_speed; // Set the motor to the restored state (will be applied after initialization)
motor_state.current_speed = 0; // Always start ramping from 0 motor_set_speed((motor_mode_t)stored_mode, stored_speed);
} else { } else {
ESP_LOGI(SYSTEM_TAG, "❌ No valid state to restore (mode=%d, speed=%d)", stored_mode, stored_speed); ESP_LOGI(SYSTEM_TAG, "❌ No valid state to restore (mode=%d, speed=%d)", stored_mode, stored_speed);
motor_state.mode = MOTOR_OFF; // Motor module is already initialized in OFF state, no action needed
motor_state.target_speed = 0;
motor_state.current_speed = 0;
} }
} else { } else {
ESP_LOGI(SYSTEM_TAG, "No saved state found, using defaults"); ESP_LOGI(SYSTEM_TAG, "No saved state found, using defaults");
@ -331,16 +276,6 @@ static esp_err_t load_motor_state_from_nvs(void) {
return err; return err;
} }
// Save the last ON state (for ON button functionality)
static void save_last_on_state(motor_mode_t mode, int speed) {
if (mode != MOTOR_OFF && speed > 0) {
motor_state.last_on_mode = mode;
motor_state.last_on_speed = speed;
ESP_LOGI(SYSTEM_TAG, "Last ON state updated: %s @ %d%%",
mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE", speed);
}
}
// WiFi event handler // WiFi event handler
static void event_handler(void* arg, esp_event_base_t event_base, static void event_handler(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data) int32_t event_id, void* event_data)
@ -364,305 +299,6 @@ static void event_handler(void* arg, esp_event_base_t event_base,
} }
} }
void configure_gpio_pins(void)
{
ESP_LOGI(SYSTEM_TAG, "Configuring GPIO pins...");
uint64_t pin_mask = (1ULL << LED_PIN) |
(1ULL << MOTOR_R_EN) |
(1ULL << MOTOR_L_EN);
gpio_config_t io_conf = {
.pin_bit_mask = pin_mask,
.mode = GPIO_MODE_OUTPUT,
.pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE
};
gpio_config(&io_conf);
gpio_set_level(LED_PIN, 0);
gpio_set_level(MOTOR_R_EN, 0);
gpio_set_level(MOTOR_L_EN, 0);
ESP_LOGI(SYSTEM_TAG, "GPIO pins configured");
}
void configure_pwm(void)
{
ESP_LOGI(SYSTEM_TAG, "Configuring PWM...");
ledc_timer_config_t timer_conf = {
.speed_mode = PWM_SPEED_MODE,
.timer_num = PWM_TIMER,
.duty_resolution = PWM_RESOLUTION,
.freq_hz = PWM_FREQUENCY,
.clk_cfg = LEDC_AUTO_CLK
};
ledc_timer_config(&timer_conf);
ledc_channel_config_t channel_conf = {
.channel = PWM_R_CHANNEL,
.duty = 0,
.gpio_num = PWM_R_PIN,
.speed_mode = PWM_SPEED_MODE,
.hpoint = 0,
.timer_sel = PWM_TIMER
};
ledc_channel_config(&channel_conf);
channel_conf.channel = PWM_L_CHANNEL;
channel_conf.gpio_num = PWM_L_PIN;
ledc_channel_config(&channel_conf);
ESP_LOGI(SYSTEM_TAG, "PWM configured");
}
// Apply PWM to motor based on current mode and speed
static void apply_motor_pwm(int speed_percent) {
// Clamp speed to valid range using config macro
speed_percent = CLAMP_SPEED(speed_percent);
uint32_t duty = SPEED_TO_DUTY(speed_percent);
if (motor_state.mode == MOTOR_OFF || speed_percent == 0) {
gpio_set_level(LED_PIN, 0);
gpio_set_level(MOTOR_R_EN, 0);
gpio_set_level(MOTOR_L_EN, 0);
ledc_set_duty(PWM_SPEED_MODE, PWM_R_CHANNEL, 0);
ledc_set_duty(PWM_SPEED_MODE, PWM_L_CHANNEL, 0);
ledc_update_duty(PWM_SPEED_MODE, PWM_R_CHANNEL);
ledc_update_duty(PWM_SPEED_MODE, PWM_L_CHANNEL);
} else if (motor_state.mode == MOTOR_EXHAUST) {
gpio_set_level(LED_PIN, 1);
gpio_set_level(MOTOR_R_EN, 1);
gpio_set_level(MOTOR_L_EN, 1);
ledc_set_duty(PWM_SPEED_MODE, PWM_R_CHANNEL, duty);
ledc_set_duty(PWM_SPEED_MODE, PWM_L_CHANNEL, 0);
ledc_update_duty(PWM_SPEED_MODE, PWM_R_CHANNEL);
ledc_update_duty(PWM_SPEED_MODE, PWM_L_CHANNEL);
} else if (motor_state.mode == MOTOR_INTAKE) {
gpio_set_level(LED_PIN, 1);
gpio_set_level(MOTOR_R_EN, 1);
gpio_set_level(MOTOR_L_EN, 1);
ledc_set_duty(PWM_SPEED_MODE, PWM_R_CHANNEL, 0);
ledc_set_duty(PWM_SPEED_MODE, PWM_L_CHANNEL, duty);
ledc_update_duty(PWM_SPEED_MODE, PWM_R_CHANNEL);
ledc_update_duty(PWM_SPEED_MODE, PWM_L_CHANNEL);
}
}
// Motor ramp timer callback
static void motor_ramp_timer_callback(TimerHandle_t xTimer) {
if (motor_state.state != MOTOR_STATE_RAMPING) {
return;
}
int speed_diff = motor_state.target_speed - motor_state.current_speed;
if (abs(speed_diff) <= RAMP_STEP_SIZE) {
// Close enough to target, finish ramping
motor_state.current_speed = motor_state.target_speed;
motor_state.ramping = false;
motor_state.state = MOTOR_STATE_IDLE;
// Stop the timer
xTimerStop(motor_state.ramp_timer, 0);
ESP_LOGI(SYSTEM_TAG, "Ramping complete - Final speed: %d%%", motor_state.current_speed);
} else {
// Continue ramping
if (speed_diff > 0) {
motor_state.current_speed += RAMP_STEP_SIZE;
} else {
motor_state.current_speed -= RAMP_STEP_SIZE;
}
MOTOR_LOGD(SYSTEM_TAG, "Ramping: %d%% (target: %d%%)", motor_state.current_speed, motor_state.target_speed);
}
apply_motor_pwm(motor_state.current_speed);
}
// Motor cooldown timer callback
static void motor_cooldown_timer_callback(TimerHandle_t xTimer) {
ESP_LOGI(SYSTEM_TAG, "Cooldown complete - Starting motor in %s mode at %d%%",
motor_state.pending_mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE",
motor_state.pending_speed);
// Reset cooldown tracking
motor_state.cooldown_remaining_ms = 0;
// Start the motor in the pending mode
start_motor_operation(motor_state.pending_mode, motor_state.pending_speed);
}
// Update cooldown remaining time (called periodically)
static void update_cooldown_time(void) {
if (motor_state.state == MOTOR_STATE_COOLDOWN && motor_state.cooldown_remaining_ms > 0) {
if (motor_state.cooldown_remaining_ms >= STATUS_UPDATE_INTERVAL_MS) {
motor_state.cooldown_remaining_ms -= STATUS_UPDATE_INTERVAL_MS;
} else {
motor_state.cooldown_remaining_ms = 0;
}
}
}
// Start motor operation (internal function)
static void start_motor_operation(motor_mode_t mode, int speed_percent) {
// Clamp speed using config macro
speed_percent = CLAMP_SPEED(speed_percent);
motor_state.mode = mode;
motor_state.target_speed = speed_percent;
motor_state.state = MOTOR_STATE_RAMPING;
motor_state.ramping = true;
if (mode == MOTOR_OFF || speed_percent == 0) {
// Immediate stop
motor_state.current_speed = 0;
motor_state.target_speed = 0;
motor_state.state = MOTOR_STATE_IDLE;
motor_state.ramping = false;
apply_motor_pwm(0);
ESP_LOGI(SYSTEM_TAG, "Motor stopped immediately");
} else {
// Save last ON state for future ON button use
save_last_on_state(mode, speed_percent);
// Start from minimum speed if currently off
if (motor_state.current_speed == 0) {
int start_speed = (speed_percent < MIN_MOTOR_SPEED) ? speed_percent : MIN_MOTOR_SPEED;
motor_state.current_speed = start_speed;
apply_motor_pwm(start_speed);
ESP_LOGI(SYSTEM_TAG, "Motor starting at %d%%, ramping to %d%%", start_speed, speed_percent);
}
// Start ramping if needed
if (motor_state.current_speed != motor_state.target_speed) {
xTimerStart(motor_state.ramp_timer, 0);
} else {
motor_state.state = MOTOR_STATE_IDLE;
motor_state.ramping = false;
}
}
// Save state to NVS after any change
save_motor_state_to_nvs();
}
// Initialize motor ramping system
void init_motor_ramping(void) {
motor_state.ramp_timer = xTimerCreate(
"MotorRampTimer", // Timer name
pdMS_TO_TICKS(RAMP_STEP_MS), // Timer period
pdTRUE, // Auto-reload
(void*)0, // Timer ID
motor_ramp_timer_callback // Callback function
);
motor_state.cooldown_timer = xTimerCreate(
"MotorCooldownTimer", // Timer name
pdMS_TO_TICKS(DIRECTION_CHANGE_COOLDOWN_MS), // Timer period
pdFALSE, // One-shot
(void*)0, // Timer ID
motor_cooldown_timer_callback // Callback function
);
if (motor_state.ramp_timer == NULL || motor_state.cooldown_timer == NULL) {
ESP_LOGE(SYSTEM_TAG, "Failed to create motor timers");
} else {
ESP_LOGI(SYSTEM_TAG, "Motor control system initialized with direction change safety");
}
}
void set_motor_speed(motor_mode_t mode, int speed_percent)
{
// Clamp speed to valid range using config macro
speed_percent = CLAMP_SPEED(speed_percent);
ESP_LOGI(SYSTEM_TAG, "Motor command: %s - Speed: %d%% (Current mode: %s, Current speed: %d%%, State: %d)",
mode == MOTOR_OFF ? "OFF" : (mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE"),
speed_percent,
motor_state.mode == MOTOR_OFF ? "OFF" : (motor_state.mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE"),
motor_state.current_speed,
motor_state.state);
// Track if user manually turned off
if (mode == MOTOR_OFF && motor_state.mode != MOTOR_OFF) {
motor_state.user_turned_off = true;
ESP_LOGI(SYSTEM_TAG, "User manually turned OFF - will stay off after restart");
} else if (mode != MOTOR_OFF) {
motor_state.user_turned_off = false;
ESP_LOGI(SYSTEM_TAG, "Motor turned ON - will resume after power loss");
}
// If we're in cooldown, update the pending command
if (motor_state.state == MOTOR_STATE_COOLDOWN) {
motor_state.pending_mode = mode;
motor_state.pending_speed = speed_percent;
ESP_LOGI(SYSTEM_TAG, "Motor in cooldown - command queued for execution");
save_motor_state_to_nvs(); // Save the pending state
return;
}
// Check if this is a direction change that requires cooldown using config macro
bool requires_cooldown = false;
if (motor_state.current_speed > 0 && motor_state.mode != MOTOR_OFF) {
requires_cooldown = IS_DIRECTION_CHANGE(motor_state.mode, mode);
}
if (requires_cooldown) {
ESP_LOGI(SYSTEM_TAG, "Direction change detected - initiating safety cooldown sequence");
// Stop any current ramping
if (motor_state.ramping) {
xTimerStop(motor_state.ramp_timer, 0);
motor_state.ramping = false;
}
// Stop the motor immediately
motor_state.mode = MOTOR_OFF;
motor_state.current_speed = 0;
motor_state.target_speed = 0;
motor_state.state = MOTOR_STATE_COOLDOWN;
motor_state.cooldown_remaining_ms = DIRECTION_CHANGE_COOLDOWN_MS;
apply_motor_pwm(0);
// Store the pending command
motor_state.pending_mode = mode;
motor_state.pending_speed = speed_percent;
// Start cooldown timer
xTimerStart(motor_state.cooldown_timer, 0);
ESP_LOGI(SYSTEM_TAG, "Motor stopped for direction change - %d second cooldown started",
DIRECTION_CHANGE_COOLDOWN_MS / 1000);
// Save state including pending command
save_motor_state_to_nvs();
} else {
// No direction change required, proceed normally
// Stop any current ramping
if (motor_state.ramping) {
xTimerStop(motor_state.ramp_timer, 0);
motor_state.ramping = false;
}
// Stop cooldown timer if running
if (motor_state.state == MOTOR_STATE_COOLDOWN) {
xTimerStop(motor_state.cooldown_timer, 0);
motor_state.cooldown_remaining_ms = 0;
}
start_motor_operation(mode, speed_percent);
}
}
// Helper function to set CORS headers // Helper function to set CORS headers
static void set_cors_headers(httpd_req_t *req) { static void set_cors_headers(httpd_req_t *req) {
httpd_resp_set_hdr(req, "Access-Control-Allow-Origin", "*"); httpd_resp_set_hdr(req, "Access-Control-Allow-Origin", "*");
@ -684,11 +320,17 @@ static esp_err_t root_get_handler(httpd_req_t *req)
static esp_err_t status_get_handler(httpd_req_t *req) static esp_err_t status_get_handler(httpd_req_t *req)
{ {
// Update cooldown time before reporting // Update cooldown time before reporting
update_cooldown_time(); motor_update_cooldown_time();
ESP_LOGI(SYSTEM_TAG, "Status request - Mode: %d, Current: %d%%, Target: %d%%, State: %d, Ramping: %s", // Get current motor state
motor_state.mode, motor_state.current_speed, motor_state.target_speed, const motor_state_t* state = motor_get_state();
motor_state.state, motor_state.ramping ? "YES" : "NO"); motor_mode_t last_on_mode;
int last_on_speed;
motor_get_last_on_state(&last_on_mode, &last_on_speed);
ESP_LOGI(SYSTEM_TAG, "Status request - Mode: %s, Current: %d%%, Target: %d%%, State: %s, Ramping: %s",
motor_mode_to_string(state->mode), state->current_speed, state->target_speed,
motor_state_to_string(state->state), state->ramping ? "YES" : "NO");
set_cors_headers(req); set_cors_headers(req);
httpd_resp_set_type(req, "application/json"); httpd_resp_set_type(req, "application/json");
@ -696,11 +338,11 @@ static esp_err_t status_get_handler(httpd_req_t *req)
cJSON *json = cJSON_CreateObject(); cJSON *json = cJSON_CreateObject();
const char* mode_str = "off"; const char* mode_str = "off";
if (motor_state.mode == MOTOR_EXHAUST) mode_str = "exhaust"; if (state->mode == MOTOR_EXHAUST) mode_str = "exhaust";
else if (motor_state.mode == MOTOR_INTAKE) mode_str = "intake"; else if (state->mode == MOTOR_INTAKE) mode_str = "intake";
const char* state_str = "idle"; const char* state_str = "idle";
switch (motor_state.state) { switch (state->state) {
case MOTOR_STATE_RAMPING: state_str = "ramping"; break; case MOTOR_STATE_RAMPING: state_str = "ramping"; break;
case MOTOR_STATE_STOPPING: state_str = "stopping"; break; case MOTOR_STATE_STOPPING: state_str = "stopping"; break;
case MOTOR_STATE_COOLDOWN: state_str = "cooldown"; break; case MOTOR_STATE_COOLDOWN: state_str = "cooldown"; break;
@ -709,25 +351,25 @@ static esp_err_t status_get_handler(httpd_req_t *req)
} }
const char* last_on_mode_str = "exhaust"; const char* last_on_mode_str = "exhaust";
if (motor_state.last_on_mode == MOTOR_INTAKE) last_on_mode_str = "intake"; if (last_on_mode == MOTOR_INTAKE) last_on_mode_str = "intake";
cJSON_AddStringToObject(json, "mode", mode_str); cJSON_AddStringToObject(json, "mode", mode_str);
cJSON_AddNumberToObject(json, "current_speed", motor_state.current_speed); cJSON_AddNumberToObject(json, "current_speed", state->current_speed);
cJSON_AddNumberToObject(json, "target_speed", motor_state.target_speed); cJSON_AddNumberToObject(json, "target_speed", state->target_speed);
cJSON_AddStringToObject(json, "state", state_str); cJSON_AddStringToObject(json, "state", state_str);
cJSON_AddBoolToObject(json, "ramping", motor_state.ramping); cJSON_AddBoolToObject(json, "ramping", state->ramping);
cJSON_AddNumberToObject(json, "cooldown_remaining", motor_state.cooldown_remaining_ms); cJSON_AddNumberToObject(json, "cooldown_remaining", state->cooldown_remaining_ms);
cJSON_AddStringToObject(json, "last_on_mode", last_on_mode_str); cJSON_AddStringToObject(json, "last_on_mode", last_on_mode_str);
cJSON_AddNumberToObject(json, "last_on_speed", motor_state.last_on_speed); cJSON_AddNumberToObject(json, "last_on_speed", last_on_speed);
// Add pending command info if in cooldown // Add pending command info if in cooldown
if (motor_state.state == MOTOR_STATE_COOLDOWN) { if (state->state == MOTOR_STATE_COOLDOWN) {
const char* pending_mode_str = "off"; const char* pending_mode_str = "off";
if (motor_state.pending_mode == MOTOR_EXHAUST) pending_mode_str = "exhaust"; if (state->pending_mode == MOTOR_EXHAUST) pending_mode_str = "exhaust";
else if (motor_state.pending_mode == MOTOR_INTAKE) pending_mode_str = "intake"; else if (state->pending_mode == MOTOR_INTAKE) pending_mode_str = "intake";
cJSON_AddStringToObject(json, "pending_mode", pending_mode_str); cJSON_AddStringToObject(json, "pending_mode", pending_mode_str);
cJSON_AddNumberToObject(json, "pending_speed", motor_state.pending_speed); cJSON_AddNumberToObject(json, "pending_speed", state->pending_speed);
} }
char *json_string = cJSON_Print(json); char *json_string = cJSON_Print(json);
@ -799,10 +441,14 @@ static esp_err_t fan_post_handler(httpd_req_t *req)
// Handle special "ON" command - resume last settings // Handle special "ON" command - resume last settings
if (strcmp(mode_str, "on") == 0) { if (strcmp(mode_str, "on") == 0) {
mode = motor_state.last_on_mode; ESP_LOGI(SYSTEM_TAG, "ON button pressed - resuming last state");
speed = motor_state.last_on_speed; motor_resume_last_state();
ESP_LOGI(SYSTEM_TAG, "ON button pressed - resuming %s @ %d%%",
mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE", speed); // Save state after ON button
save_motor_state_to_nvs();
cJSON_Delete(json);
return status_get_handler(req);
} else if (strcmp(mode_str, "exhaust") == 0) { } else if (strcmp(mode_str, "exhaust") == 0) {
mode = MOTOR_EXHAUST; mode = MOTOR_EXHAUST;
} else if (strcmp(mode_str, "intake") == 0) { } else if (strcmp(mode_str, "intake") == 0) {
@ -810,7 +456,10 @@ static esp_err_t fan_post_handler(httpd_req_t *req)
} }
ESP_LOGI(SYSTEM_TAG, "HTTP Request: mode=%s, speed=%d", mode_str, speed); ESP_LOGI(SYSTEM_TAG, "HTTP Request: mode=%s, speed=%d", mode_str, speed);
set_motor_speed(mode, speed); motor_set_speed(mode, speed);
// Save state after any motor command
save_motor_state_to_nvs();
cJSON_Delete(json); cJSON_Delete(json);
@ -962,14 +611,15 @@ void app_main(void)
// Initialize watchdog timer // Initialize watchdog timer
init_watchdog(); init_watchdog();
// Configure hardware // Initialize motor control system
configure_gpio_pins(); ESP_LOGI(SYSTEM_TAG, "Initializing motor control system...");
configure_pwm(); ret = motor_control_init();
if (ret != ESP_OK) {
ESP_LOGE(SYSTEM_TAG, "Failed to initialize motor control: %s", esp_err_to_name(ret));
return;
}
// Initialize motor ramping system // Load saved state from NVS and potentially restore motor state
init_motor_ramping();
// Load saved state from NVS
ESP_LOGI(SYSTEM_TAG, "Loading saved state..."); ESP_LOGI(SYSTEM_TAG, "Loading saved state...");
load_motor_state_from_nvs(); load_motor_state_from_nvs();
@ -979,35 +629,35 @@ void app_main(void)
// Start HTTP server // Start HTTP server
start_webserver(); start_webserver();
// Restore motor state if needed (after WiFi is connected and server is running) // Report final motor state after initialization
ESP_LOGI(SYSTEM_TAG, "=== MOTOR STATE RESTORATION ==="); const motor_state_t* final_state = motor_get_state();
ESP_LOGI(SYSTEM_TAG, "Current motor state: mode=%d, target=%d%%, current=%d%%", ESP_LOGI(SYSTEM_TAG, "=== MOTOR STATE AFTER INITIALIZATION ===");
motor_state.mode, motor_state.target_speed, motor_state.current_speed); ESP_LOGI(SYSTEM_TAG, "Final motor state: mode=%s, target=%d%%, current=%d%%, state=%s",
motor_mode_to_string(final_state->mode), final_state->target_speed,
final_state->current_speed, motor_state_to_string(final_state->state));
if (motor_state.mode != MOTOR_OFF && motor_state.target_speed > 0) { if (final_state->mode != MOTOR_OFF && final_state->target_speed > 0) {
ESP_LOGI(SYSTEM_TAG, "Restoring motor state: %s @ %d%%", ESP_LOGI(SYSTEM_TAG, "Motor restored to: %s @ %d%%",
motor_state.mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE", motor_mode_to_string(final_state->mode), final_state->target_speed);
motor_state.target_speed);
// Start the motor with current settings
motor_state.current_speed = 0; // Start from 0 and ramp up
start_motor_operation(motor_state.mode, motor_state.target_speed);
ESP_LOGI(SYSTEM_TAG, "Motor restoration initiated");
} else { } else {
ESP_LOGI(SYSTEM_TAG, "No motor state to restore - staying OFF"); ESP_LOGI(SYSTEM_TAG, "Motor remains OFF");
} }
ESP_LOGI(SYSTEM_TAG, "==============================="); ESP_LOGI(SYSTEM_TAG, "=======================================");
ESP_LOGI(SYSTEM_TAG, "=== Enhanced Maxxfan Controller Ready! ==="); ESP_LOGI(SYSTEM_TAG, "=== Enhanced Maxxfan Controller Ready! ===");
ESP_LOGI(SYSTEM_TAG, "Features: State Preservation, Direction Safety, Motor Ramping, ON Button"); ESP_LOGI(SYSTEM_TAG, "Features: State Preservation, Direction Safety, Motor Ramping, ON Button");
ESP_LOGI(SYSTEM_TAG, "Safety: 10-second cooldown for direction changes"); ESP_LOGI(SYSTEM_TAG, "Safety: %d-second cooldown for direction changes", DIRECTION_CHANGE_COOLDOWN_MS / 1000);
ESP_LOGI(SYSTEM_TAG, "Memory: Remembers settings after power loss (except watchdog resets)"); ESP_LOGI(SYSTEM_TAG, "Memory: Remembers settings after power loss (except watchdog resets)");
ESP_LOGI(SYSTEM_TAG, "Open your browser and go to: http://[ESP32_IP_ADDRESS]"); ESP_LOGI(SYSTEM_TAG, "Open your browser and go to: http://[ESP32_IP_ADDRESS]");
ESP_LOGI(SYSTEM_TAG, "Check the monitor output above for your IP address"); ESP_LOGI(SYSTEM_TAG, "Check the monitor output above for your IP address");
// Main loop - reset watchdog periodically // Main loop - reset watchdog periodically and update motor cooldown
while (1) { while (1) {
feed_watchdog(); feed_watchdog();
// Update motor cooldown time for status reporting
motor_update_cooldown_time();
vTaskDelay(pdMS_TO_TICKS(WATCHDOG_FEED_INTERVAL_MS)); vTaskDelay(pdMS_TO_TICKS(WATCHDOG_FEED_INTERVAL_MS));
} }
} }

411
main/motor_control.c Normal file
View File

@ -0,0 +1,411 @@
#include "motor_control.h"
#include "config.h"
#include "esp_log.h"
#include "driver/gpio.h"
#include "driver/ledc.h"
#include <string.h>
// Private variables
static motor_state_t motor_state = {
.mode = MOTOR_OFF,
.pending_mode = MOTOR_OFF,
.target_speed = 0,
.pending_speed = 0,
.current_speed = 0,
.state = MOTOR_STATE_IDLE,
.ramping = false,
.ramp_timer = NULL,
.cooldown_timer = NULL,
.cooldown_remaining_ms = 0,
.last_on_mode = MOTOR_EXHAUST, // Default to exhaust for ON button
.last_on_speed = 50, // Default to 50% for ON button
.user_turned_off = false
};
// Forward declarations for private functions
static void apply_motor_pwm(int speed_percent);
static void start_motor_operation(motor_mode_t mode, int speed_percent);
static void save_last_on_state(motor_mode_t mode, int speed);
static void motor_ramp_timer_callback(TimerHandle_t xTimer);
static void motor_cooldown_timer_callback(TimerHandle_t xTimer);
// Private function: Apply PWM to motor based on current mode and speed
static void apply_motor_pwm(int speed_percent) {
// Clamp speed to valid range using config macro
speed_percent = CLAMP_SPEED(speed_percent);
uint32_t duty = SPEED_TO_DUTY(speed_percent);
if (motor_state.mode == MOTOR_OFF || speed_percent == 0) {
gpio_set_level(LED_PIN, 0);
gpio_set_level(MOTOR_R_EN, 0);
gpio_set_level(MOTOR_L_EN, 0);
ledc_set_duty(PWM_SPEED_MODE, PWM_R_CHANNEL, 0);
ledc_set_duty(PWM_SPEED_MODE, PWM_L_CHANNEL, 0);
ledc_update_duty(PWM_SPEED_MODE, PWM_R_CHANNEL);
ledc_update_duty(PWM_SPEED_MODE, PWM_L_CHANNEL);
} else if (motor_state.mode == MOTOR_EXHAUST) {
gpio_set_level(LED_PIN, 1);
gpio_set_level(MOTOR_R_EN, 1);
gpio_set_level(MOTOR_L_EN, 1);
ledc_set_duty(PWM_SPEED_MODE, PWM_R_CHANNEL, duty);
ledc_set_duty(PWM_SPEED_MODE, PWM_L_CHANNEL, 0);
ledc_update_duty(PWM_SPEED_MODE, PWM_R_CHANNEL);
ledc_update_duty(PWM_SPEED_MODE, PWM_L_CHANNEL);
} else if (motor_state.mode == MOTOR_INTAKE) {
gpio_set_level(LED_PIN, 1);
gpio_set_level(MOTOR_R_EN, 1);
gpio_set_level(MOTOR_L_EN, 1);
ledc_set_duty(PWM_SPEED_MODE, PWM_R_CHANNEL, 0);
ledc_set_duty(PWM_SPEED_MODE, PWM_L_CHANNEL, duty);
ledc_update_duty(PWM_SPEED_MODE, PWM_R_CHANNEL);
ledc_update_duty(PWM_SPEED_MODE, PWM_L_CHANNEL);
}
}
// Private function: Motor ramp timer callback
static void motor_ramp_timer_callback(TimerHandle_t xTimer) {
if (motor_state.state != MOTOR_STATE_RAMPING) {
return;
}
int speed_diff = motor_state.target_speed - motor_state.current_speed;
if (abs(speed_diff) <= RAMP_STEP_SIZE) {
// Close enough to target, finish ramping
motor_state.current_speed = motor_state.target_speed;
motor_state.ramping = false;
motor_state.state = MOTOR_STATE_IDLE;
// Stop the timer
xTimerStop(motor_state.ramp_timer, 0);
ESP_LOGI(SYSTEM_TAG, "Ramping complete - Final speed: %d%%", motor_state.current_speed);
} else {
// Continue ramping
if (speed_diff > 0) {
motor_state.current_speed += RAMP_STEP_SIZE;
} else {
motor_state.current_speed -= RAMP_STEP_SIZE;
}
MOTOR_LOGD(SYSTEM_TAG, "Ramping: %d%% (target: %d%%)", motor_state.current_speed, motor_state.target_speed);
}
apply_motor_pwm(motor_state.current_speed);
}
// Private function: Motor cooldown timer callback
static void motor_cooldown_timer_callback(TimerHandle_t xTimer) {
ESP_LOGI(SYSTEM_TAG, "Cooldown complete - Starting motor in %s mode at %d%%",
motor_state.pending_mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE",
motor_state.pending_speed);
// Reset cooldown tracking
motor_state.cooldown_remaining_ms = 0;
// Start the motor in the pending mode
start_motor_operation(motor_state.pending_mode, motor_state.pending_speed);
}
// Private function: Save the last ON state (for ON button functionality)
static void save_last_on_state(motor_mode_t mode, int speed) {
if (mode != MOTOR_OFF && speed > 0) {
motor_state.last_on_mode = mode;
motor_state.last_on_speed = speed;
ESP_LOGI(SYSTEM_TAG, "Last ON state updated: %s @ %d%%",
mode == MOTOR_EXHAUST ? "EXHAUST" : "INTAKE", speed);
}
}
// Private function: Start motor operation (internal function)
static void start_motor_operation(motor_mode_t mode, int speed_percent) {
// Clamp speed using config macro
speed_percent = CLAMP_SPEED(speed_percent);
motor_state.mode = mode;
motor_state.target_speed = speed_percent;
motor_state.state = MOTOR_STATE_RAMPING;
motor_state.ramping = true;
if (mode == MOTOR_OFF || speed_percent == 0) {
// Immediate stop
motor_state.current_speed = 0;
motor_state.target_speed = 0;
motor_state.state = MOTOR_STATE_IDLE;
motor_state.ramping = false;
apply_motor_pwm(0);
ESP_LOGI(SYSTEM_TAG, "Motor stopped immediately");
} else {
// Save last ON state for future ON button use
save_last_on_state(mode, speed_percent);
// Start from minimum speed if currently off
if (motor_state.current_speed == 0) {
int start_speed = (speed_percent < MIN_MOTOR_SPEED) ? speed_percent : MIN_MOTOR_SPEED;
motor_state.current_speed = start_speed;
apply_motor_pwm(start_speed);
ESP_LOGI(SYSTEM_TAG, "Motor starting at %d%%, ramping to %d%%", start_speed, speed_percent);
}
// Start ramping if needed
if (motor_state.current_speed != motor_state.target_speed) {
xTimerStart(motor_state.ramp_timer, 0);
} else {
motor_state.state = MOTOR_STATE_IDLE;
motor_state.ramping = false;
}
}
}
// Public API Implementation
esp_err_t motor_control_init(void) {
ESP_LOGI(SYSTEM_TAG, "Initializing motor control system...");
// Configure GPIO pins
ESP_LOGI(SYSTEM_TAG, "Configuring GPIO pins...");
uint64_t pin_mask = (1ULL << LED_PIN) |
(1ULL << MOTOR_R_EN) |
(1ULL << MOTOR_L_EN);
gpio_config_t io_conf = {
.pin_bit_mask = pin_mask,
.mode = GPIO_MODE_OUTPUT,
.pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE
};
esp_err_t ret = gpio_config(&io_conf);
if (ret != ESP_OK) {
ESP_LOGE(SYSTEM_TAG, "Failed to configure GPIO pins: %s", esp_err_to_name(ret));
return ret;
}
// Set initial pin states
gpio_set_level(LED_PIN, 0);
gpio_set_level(MOTOR_R_EN, 0);
gpio_set_level(MOTOR_L_EN, 0);
ESP_LOGI(SYSTEM_TAG, "GPIO pins configured");
// Configure PWM
ESP_LOGI(SYSTEM_TAG, "Configuring PWM...");
ledc_timer_config_t timer_conf = {
.speed_mode = PWM_SPEED_MODE,
.timer_num = PWM_TIMER,
.duty_resolution = PWM_RESOLUTION,
.freq_hz = PWM_FREQUENCY,
.clk_cfg = LEDC_AUTO_CLK
};
ret = ledc_timer_config(&timer_conf);
if (ret != ESP_OK) {
ESP_LOGE(SYSTEM_TAG, "Failed to configure PWM timer: %s", esp_err_to_name(ret));
return ret;
}
ledc_channel_config_t channel_conf = {
.channel = PWM_R_CHANNEL,
.duty = 0,
.gpio_num = PWM_R_PIN,
.speed_mode = PWM_SPEED_MODE,
.hpoint = 0,
.timer_sel = PWM_TIMER
};
ret = ledc_channel_config(&channel_conf);
if (ret != ESP_OK) {
ESP_LOGE(SYSTEM_TAG, "Failed to configure PWM right channel: %s", esp_err_to_name(ret));
return ret;
}
channel_conf.channel = PWM_L_CHANNEL;
channel_conf.gpio_num = PWM_L_PIN;
ret = ledc_channel_config(&channel_conf);
if (ret != ESP_OK) {
ESP_LOGE(SYSTEM_TAG, "Failed to configure PWM left channel: %s", esp_err_to_name(ret));
return ret;
}
ESP_LOGI(SYSTEM_TAG, "PWM configured");
// Create timers
motor_state.ramp_timer = xTimerCreate(
"MotorRampTimer", // Timer name
pdMS_TO_TICKS(RAMP_STEP_MS), // Timer period
pdTRUE, // Auto-reload
(void*)0, // Timer ID
motor_ramp_timer_callback // Callback function
);
motor_state.cooldown_timer = xTimerCreate(
"MotorCooldownTimer", // Timer name
pdMS_TO_TICKS(DIRECTION_CHANGE_COOLDOWN_MS), // Timer period
pdFALSE, // One-shot
(void*)0, // Timer ID
motor_cooldown_timer_callback // Callback function
);
if (motor_state.ramp_timer == NULL || motor_state.cooldown_timer == NULL) {
ESP_LOGE(SYSTEM_TAG, "Failed to create motor timers");
return ESP_FAIL;
}
ESP_LOGI(SYSTEM_TAG, "Motor control system initialized with direction change safety");
return ESP_OK;
}
void motor_set_speed(motor_mode_t mode, int speed_percent) {
// Clamp speed to valid range using config macro
speed_percent = CLAMP_SPEED(speed_percent);
ESP_LOGI(SYSTEM_TAG, "Motor command: %s - Speed: %d%% (Current mode: %s, Current speed: %d%%, State: %s)",
motor_mode_to_string(mode), speed_percent,
motor_mode_to_string(motor_state.mode), motor_state.current_speed,
motor_state_to_string(motor_state.state));
// Track if user manually turned off
if (mode == MOTOR_OFF && motor_state.mode != MOTOR_OFF) {
motor_state.user_turned_off = true;
ESP_LOGI(SYSTEM_TAG, "User manually turned OFF - will stay off after restart");
} else if (mode != MOTOR_OFF) {
motor_state.user_turned_off = false;
ESP_LOGI(SYSTEM_TAG, "Motor turned ON - will resume after power loss");
}
// If we're in cooldown, update the pending command
if (motor_state.state == MOTOR_STATE_COOLDOWN) {
motor_state.pending_mode = mode;
motor_state.pending_speed = speed_percent;
ESP_LOGI(SYSTEM_TAG, "Motor in cooldown - command queued for execution");
return;
}
// Check if this is a direction change that requires cooldown using config macro
bool requires_cooldown = false;
if (motor_state.current_speed > 0 && motor_state.mode != MOTOR_OFF) {
requires_cooldown = IS_DIRECTION_CHANGE(motor_state.mode, mode);
}
if (requires_cooldown) {
ESP_LOGI(SYSTEM_TAG, "Direction change detected - initiating safety cooldown sequence");
// Stop any current ramping
if (motor_state.ramping) {
xTimerStop(motor_state.ramp_timer, 0);
motor_state.ramping = false;
}
// Stop the motor immediately
motor_state.mode = MOTOR_OFF;
motor_state.current_speed = 0;
motor_state.target_speed = 0;
motor_state.state = MOTOR_STATE_COOLDOWN;
motor_state.cooldown_remaining_ms = DIRECTION_CHANGE_COOLDOWN_MS;
apply_motor_pwm(0);
// Store the pending command
motor_state.pending_mode = mode;
motor_state.pending_speed = speed_percent;
// Start cooldown timer
xTimerStart(motor_state.cooldown_timer, 0);
ESP_LOGI(SYSTEM_TAG, "Motor stopped for direction change - %d second cooldown started",
DIRECTION_CHANGE_COOLDOWN_MS / 1000);
} else {
// No direction change required, proceed normally
// Stop any current ramping
if (motor_state.ramping) {
xTimerStop(motor_state.ramp_timer, 0);
motor_state.ramping = false;
}
// Stop cooldown timer if running
if (motor_state.state == MOTOR_STATE_COOLDOWN) {
xTimerStop(motor_state.cooldown_timer, 0);
motor_state.cooldown_remaining_ms = 0;
}
start_motor_operation(mode, speed_percent);
}
}
const motor_state_t* motor_get_state(void) {
return &motor_state;
}
void motor_update_cooldown_time(void) {
if (motor_state.state == MOTOR_STATE_COOLDOWN && motor_state.cooldown_remaining_ms > 0) {
if (motor_state.cooldown_remaining_ms >= STATUS_UPDATE_INTERVAL_MS) {
motor_state.cooldown_remaining_ms -= STATUS_UPDATE_INTERVAL_MS;
} else {
motor_state.cooldown_remaining_ms = 0;
}
}
}
const char* motor_mode_to_string(motor_mode_t mode) {
switch (mode) {
case MOTOR_OFF: return "OFF";
case MOTOR_EXHAUST: return "EXHAUST";
case MOTOR_INTAKE: return "INTAKE";
default: return "UNKNOWN";
}
}
const char* motor_state_to_string(motor_state_enum_t state) {
switch (state) {
case MOTOR_STATE_IDLE: return "IDLE";
case MOTOR_STATE_RAMPING: return "RAMPING";
case MOTOR_STATE_STOPPING: return "STOPPING";
case MOTOR_STATE_COOLDOWN: return "COOLDOWN";
case MOTOR_STATE_RESTARTING: return "RESTARTING";
default: return "UNKNOWN";
}
}
bool motor_is_ramping(void) {
return motor_state.ramping;
}
bool motor_is_in_cooldown(void) {
return motor_state.state == MOTOR_STATE_COOLDOWN;
}
uint32_t motor_get_cooldown_remaining(void) {
return motor_state.cooldown_remaining_ms;
}
void motor_set_last_on_state(motor_mode_t mode, int speed) {
if (mode != MOTOR_OFF && IS_VALID_SPEED(speed) && speed > 0) {
motor_state.last_on_mode = mode;
motor_state.last_on_speed = speed;
ESP_LOGI(SYSTEM_TAG, "Last ON state set: %s @ %d%%",
motor_mode_to_string(mode), speed);
}
}
void motor_get_last_on_state(motor_mode_t* mode, int* speed) {
if (mode) *mode = motor_state.last_on_mode;
if (speed) *speed = motor_state.last_on_speed;
}
void motor_resume_last_state(void) {
ESP_LOGI(SYSTEM_TAG, "Resuming last state: %s @ %d%%",
motor_mode_to_string(motor_state.last_on_mode), motor_state.last_on_speed);
motor_set_speed(motor_state.last_on_mode, motor_state.last_on_speed);
}
void motor_set_user_turned_off(bool turned_off) {
motor_state.user_turned_off = turned_off;
}
bool motor_get_user_turned_off(void) {
return motor_state.user_turned_off;
}

166
main/motor_control.h Normal file
View File

@ -0,0 +1,166 @@
#ifndef MOTOR_CONTROL_H
#define MOTOR_CONTROL_H
#include "freertos/FreeRTOS.h"
#include "freertos/timers.h"
#include "esp_err.h"
#include <stdbool.h>
// Motor mode enumeration
typedef enum {
MOTOR_OFF,
MOTOR_EXHAUST,
MOTOR_INTAKE
} motor_mode_t;
// Motor state enumeration
typedef enum {
MOTOR_STATE_IDLE, // Motor is off or running normally
MOTOR_STATE_RAMPING, // Motor is ramping up/down
MOTOR_STATE_STOPPING, // Motor is stopping for direction change
MOTOR_STATE_COOLDOWN, // Motor is in cooldown period
MOTOR_STATE_RESTARTING // Motor is restarting after cooldown
} motor_state_enum_t;
// Motor state structure
typedef struct {
motor_mode_t mode;
motor_mode_t pending_mode; // Mode to switch to after cooldown
int target_speed;
int pending_speed; // Speed to set after cooldown
int current_speed;
motor_state_enum_t state;
bool ramping;
TimerHandle_t ramp_timer;
TimerHandle_t cooldown_timer;
uint32_t cooldown_remaining_ms; // For status reporting
// State preservation
motor_mode_t last_on_mode; // Last non-OFF mode for ON button
int last_on_speed; // Last non-zero speed for ON button
bool user_turned_off; // Track if user manually turned off
} motor_state_t;
// Public API functions
/**
* @brief Initialize the motor control system
*
* Sets up GPIO pins, PWM channels, and creates FreeRTOS timers for ramping and cooldown.
* Must be called before any other motor control functions.
*
* @return ESP_OK on success, ESP_FAIL on error
*/
esp_err_t motor_control_init(void);
/**
* @brief Set motor speed and mode
*
* Controls the motor with automatic ramping and direction change safety.
* Handles cooldown periods when changing directions to prevent mechanical stress.
*
* @param mode Motor mode (MOTOR_OFF, MOTOR_EXHAUST, MOTOR_INTAKE)
* @param speed_percent Speed percentage (0-100)
*/
void motor_set_speed(motor_mode_t mode, int speed_percent);
/**
* @brief Get current motor state
*
* Returns a pointer to the current motor state structure for status reporting.
* The returned pointer should not be modified directly.
*
* @return Pointer to motor_state_t structure
*/
const motor_state_t* motor_get_state(void);
/**
* @brief Update cooldown time tracking
*
* Should be called periodically (e.g., every 1 second) to update the
* cooldown_remaining_ms field for status reporting.
*/
void motor_update_cooldown_time(void);
/**
* @brief Get motor mode as string
*
* @param mode Motor mode enum value
* @return String representation of the mode
*/
const char* motor_mode_to_string(motor_mode_t mode);
/**
* @brief Get motor state as string
*
* @param state Motor state enum value
* @return String representation of the state
*/
const char* motor_state_to_string(motor_state_enum_t state);
/**
* @brief Check if motor is currently ramping
*
* @return true if motor is ramping, false otherwise
*/
bool motor_is_ramping(void);
/**
* @brief Check if motor is in cooldown
*
* @return true if motor is in cooldown, false otherwise
*/
bool motor_is_in_cooldown(void);
/**
* @brief Get cooldown remaining time in milliseconds
*
* @return Remaining cooldown time in milliseconds, 0 if not in cooldown
*/
uint32_t motor_get_cooldown_remaining(void);
/**
* @brief Set the "last on" state for the ON button functionality
*
* This is called automatically when the motor is turned on, but can be
* called manually to set the default state for the ON button.
*
* @param mode Motor mode (should be MOTOR_EXHAUST or MOTOR_INTAKE)
* @param speed Speed percentage (1-100)
*/
void motor_set_last_on_state(motor_mode_t mode, int speed);
/**
* @brief Get the "last on" state
*
* @param mode Pointer to store the last on mode
* @param speed Pointer to store the last on speed
*/
void motor_get_last_on_state(motor_mode_t* mode, int* speed);
/**
* @brief Resume last motor state (ON button functionality)
*
* Sets the motor to the last known good state (mode and speed).
* This is typically called when the user presses an "ON" button.
*/
void motor_resume_last_state(void);
/**
* @brief Set user turned off flag
*
* Tracks whether the user manually turned off the motor.
* This affects state restoration behavior after power loss.
*
* @param turned_off true if user manually turned off, false otherwise
*/
void motor_set_user_turned_off(bool turned_off);
/**
* @brief Get user turned off flag
*
* @return true if user manually turned off, false otherwise
*/
bool motor_get_user_turned_off(void);
#endif // MOTOR_CONTROL_H