#include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_system.h" #include "esp_log.h" #include "esp_chip_info.h" #include "esp_random.h" #include "wifi_manager.h" #include "ota_server.h" #include "plant_mqtt.h" #include "motor_control.h" #include "sdkconfig.h" static const char *TAG = "MAIN"; // Application version #define APP_VERSION "2.1.0-motor" // Test data static int test_moisture_1 = 45; static int test_moisture_2 = 62; // Motor Control Callbacks static void motor_state_change_callback(motor_id_t id, motor_state_t state) { const char *state_str = "unknown"; switch (state) { case MOTOR_STATE_STOPPED: state_str = "off"; break; case MOTOR_STATE_RUNNING: state_str = "on"; break; case MOTOR_STATE_ERROR: state_str = "error"; break; case MOTOR_STATE_COOLDOWN: state_str = "cooldown"; break; } ESP_LOGI(TAG, "Motor %d state changed to: %s", id, state_str); // Publish state change to MQTT if (mqtt_client_is_connected()) { mqtt_publish_pump_state(id, state == MOTOR_STATE_RUNNING); } } static void motor_error_callback(motor_id_t id, const char* error) { ESP_LOGE(TAG, "Motor %d error: %s", id, error); // Publish error to MQTT alert topic if (mqtt_client_is_connected()) { char topic[64]; snprintf(topic, sizeof(topic), "plant_watering/alerts/pump_error/%d", id); mqtt_client_publish(topic, error, MQTT_QOS_1, MQTT_NO_RETAIN); } } // MQTT Callbacks static void mqtt_connected_callback(void) { ESP_LOGI(TAG, "MQTT Connected - Publishing initial status"); // Publish initial states mqtt_publish_moisture(1, test_moisture_1); mqtt_publish_moisture(2, test_moisture_2); mqtt_publish_pump_state(1, motor_is_running(MOTOR_PUMP_1)); mqtt_publish_pump_state(2, motor_is_running(MOTOR_PUMP_2)); // Publish motor statistics motor_stats_t stats; for (int i = 1; i <= 2; i++) { if (motor_get_stats(i, &stats) == ESP_OK) { char topic[64]; char data[128]; snprintf(topic, sizeof(topic), "plant_watering/pump/%d/stats", i); snprintf(data, sizeof(data), "{\"total_runtime\":%lu,\"run_count\":%lu,\"last_duration\":%lu}", stats.total_runtime_ms, stats.run_count, stats.last_run_duration_ms); mqtt_client_publish(topic, data, MQTT_QOS_0, MQTT_NO_RETAIN); } } } static void mqtt_disconnected_callback(void) { ESP_LOGW(TAG, "MQTT Disconnected"); } static void mqtt_data_callback(const char* topic, const char* data, int data_len) { ESP_LOGI(TAG, "MQTT Data received on topic: %s", topic); ESP_LOGI(TAG, "Data: %.*s", data_len, data); // Handle pump control commands if (strcmp(topic, TOPIC_PUMP_1_CMD) == 0) { if (strncmp(data, "on", data_len) == 0) { ESP_LOGI(TAG, "Starting pump 1 via MQTT"); esp_err_t ret = motor_start(MOTOR_PUMP_1, MOTOR_DEFAULT_SPEED); if (ret != ESP_OK) { ESP_LOGE(TAG, "Failed to start pump 1: %s", esp_err_to_name(ret)); } } else if (strncmp(data, "off", data_len) == 0) { ESP_LOGI(TAG, "Stopping pump 1 via MQTT"); motor_stop(MOTOR_PUMP_1); } else if (strncmp(data, "pulse", data_len) == 0) { ESP_LOGI(TAG, "Pulse pump 1 for 5 seconds"); motor_start_timed(MOTOR_PUMP_1, MOTOR_DEFAULT_SPEED, 5000); } } else if (strcmp(topic, TOPIC_PUMP_2_CMD) == 0) { if (strncmp(data, "on", data_len) == 0) { ESP_LOGI(TAG, "Starting pump 2 via MQTT"); esp_err_t ret = motor_start(MOTOR_PUMP_2, MOTOR_DEFAULT_SPEED); if (ret != ESP_OK) { ESP_LOGE(TAG, "Failed to start pump 2: %s", esp_err_to_name(ret)); } } else if (strncmp(data, "off", data_len) == 0) { ESP_LOGI(TAG, "Stopping pump 2 via MQTT"); motor_stop(MOTOR_PUMP_2); } else if (strncmp(data, "pulse", data_len) == 0) { ESP_LOGI(TAG, "Pulse pump 2 for 5 seconds"); motor_start_timed(MOTOR_PUMP_2, MOTOR_DEFAULT_SPEED, 5000); } } else if (strcmp(topic, "plant_watering/pump/1/speed") == 0) { int speed = atoi(data); if (speed >= 0 && speed <= 100) { motor_set_speed(MOTOR_PUMP_1, speed); ESP_LOGI(TAG, "Set pump 1 speed to %d%%", speed); } } else if (strcmp(topic, "plant_watering/pump/2/speed") == 0) { int speed = atoi(data); if (speed >= 0 && speed <= 100) { motor_set_speed(MOTOR_PUMP_2, speed); ESP_LOGI(TAG, "Set pump 2 speed to %d%%", speed); } } else if (strcmp(topic, TOPIC_CONFIG) == 0) { ESP_LOGI(TAG, "Configuration update received"); // Parse JSON configuration here } else if (strcmp(topic, "plant_watering/commands/test_pump/1") == 0) { uint32_t duration = atoi(data); if (duration > 0 && duration <= 10000) { // Max 10 seconds for test motor_test_run(MOTOR_PUMP_1, duration); } } else if (strcmp(topic, "plant_watering/commands/test_pump/2") == 0) { uint32_t duration = atoi(data); if (duration > 0 && duration <= 10000) { // Max 10 seconds for test motor_test_run(MOTOR_PUMP_2, duration); } } else if (strcmp(topic, "plant_watering/commands/emergency_stop") == 0) { ESP_LOGW(TAG, "Emergency stop command received!"); motor_emergency_stop(); } } // WiFi event handler static void wifi_event_handler(wifi_state_t state) { switch (state) { case WIFI_STATE_CONNECTED: ESP_LOGI(TAG, "WiFi connected - starting services"); ota_server_start(); // Start MQTT client if (mqtt_client_start() != ESP_OK) { ESP_LOGE(TAG, "Failed to start MQTT client"); } break; case WIFI_STATE_DISCONNECTED: ESP_LOGW(TAG, "WiFi disconnected - stopping services"); mqtt_client_stop(); ota_server_stop(); break; case WIFI_STATE_ERROR: ESP_LOGE(TAG, "WiFi connection failed"); break; default: break; } } // OTA progress handler static void ota_progress_handler(int percent) { ESP_LOGI(TAG, "OTA Progress: %d%%", percent); } // Task to simulate sensor readings and publish stats static void sensor_simulation_task(void *pvParameters) { TickType_t last_stats_publish = 0; while (1) { // Wait for MQTT connection if (mqtt_client_is_connected()) { // Simulate moisture sensor readings with some variation test_moisture_1 += (esp_random() % 5) - 2; // +/- 2 test_moisture_2 += (esp_random() % 5) - 2; // +/- 2 // Keep values in range if (test_moisture_1 < 0) test_moisture_1 = 0; if (test_moisture_1 > 100) test_moisture_1 = 100; if (test_moisture_2 < 0) test_moisture_2 = 0; if (test_moisture_2 > 100) test_moisture_2 = 100; // Publish sensor data mqtt_publish_moisture(1, test_moisture_1); mqtt_publish_moisture(2, test_moisture_2); ESP_LOGI(TAG, "Published moisture: Sensor1=%d%%, Sensor2=%d%%", test_moisture_1, test_moisture_2); // Publish pump runtime stats every minute if (xTaskGetTickCount() - last_stats_publish > pdMS_TO_TICKS(60000)) { last_stats_publish = xTaskGetTickCount(); for (int i = 1; i <= 2; i++) { // Publish current runtime if running if (motor_is_running(i)) { char topic[64]; char data[32]; snprintf(topic, sizeof(topic), "plant_watering/pump/%d/runtime", i); snprintf(data, sizeof(data), "%lu", motor_get_runtime_ms(i)); mqtt_client_publish(topic, data, MQTT_QOS_0, MQTT_NO_RETAIN); } // Publish cooldown status if (motor_is_cooldown(i)) { char topic[64]; snprintf(topic, sizeof(topic), "plant_watering/pump/%d/cooldown", i); mqtt_client_publish(topic, "true", MQTT_QOS_0, MQTT_NO_RETAIN); } } } } // Update every 10 seconds vTaskDelay(10000 / portTICK_PERIOD_MS); } } // Task to demonstrate automated watering based on moisture static void automation_demo_task(void *pvParameters) { bool auto_mode = false; // Start with manual mode while (1) { if (auto_mode && mqtt_client_is_connected()) { // Simple threshold-based automation demo if (test_moisture_1 < CONFIG_MOISTURE_THRESHOLD_LOW) { if (!motor_is_running(MOTOR_PUMP_1) && !motor_is_cooldown(MOTOR_PUMP_1)) { ESP_LOGI(TAG, "Auto: Moisture 1 low (%d%%), starting pump 1", test_moisture_1); motor_start_timed(MOTOR_PUMP_1, MOTOR_DEFAULT_SPEED, 10000); // 10 second watering } } if (test_moisture_2 < CONFIG_MOISTURE_THRESHOLD_LOW) { if (!motor_is_running(MOTOR_PUMP_2) && !motor_is_cooldown(MOTOR_PUMP_2)) { ESP_LOGI(TAG, "Auto: Moisture 2 low (%d%%), starting pump 2", test_moisture_2); motor_start_timed(MOTOR_PUMP_2, MOTOR_DEFAULT_SPEED, 10000); // 10 second watering } } } vTaskDelay(30000 / portTICK_PERIOD_MS); // Check every 30 seconds } } void print_chip_info(void) { esp_chip_info_t chip_info; esp_chip_info(&chip_info); ESP_LOGI(TAG, "This is %s chip with %d CPU core(s), WiFi%s%s, ", CONFIG_IDF_TARGET, chip_info.cores, (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "", (chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : ""); ESP_LOGI(TAG, "silicon revision %d, ", chip_info.revision); ESP_LOGI(TAG, "Minimum free heap size: %d bytes", esp_get_minimum_free_heap_size()); } void app_main(void) { ESP_LOGI(TAG, "Plant Watering System v%s", APP_VERSION); // Print chip information print_chip_info(); // Print configuration ESP_LOGI(TAG, "Configuration:"); ESP_LOGI(TAG, " Moisture threshold low: %d%%", CONFIG_MOISTURE_THRESHOLD_LOW); ESP_LOGI(TAG, " Moisture threshold high: %d%%", CONFIG_MOISTURE_THRESHOLD_HIGH); ESP_LOGI(TAG, " Max watering duration: %d ms", CONFIG_WATERING_MAX_DURATION_MS); ESP_LOGI(TAG, " Min watering interval: %d ms", CONFIG_WATERING_MIN_INTERVAL_MS); // Initialize WiFi manager ESP_ERROR_CHECK(wifi_manager_init()); wifi_manager_register_callback(wifi_event_handler); // Initialize OTA server ESP_ERROR_CHECK(ota_server_init()); ota_server_set_version(APP_VERSION); ota_server_register_progress_callback(ota_progress_handler); // Initialize MQTT client ESP_ERROR_CHECK(mqtt_client_init()); mqtt_client_register_callbacks(mqtt_connected_callback, mqtt_disconnected_callback, mqtt_data_callback); // Initialize Motor Control ESP_ERROR_CHECK(motor_control_init()); motor_register_state_callback(motor_state_change_callback); motor_register_error_callback(motor_error_callback); // Configure motor safety limits from Kconfig motor_set_max_runtime(MOTOR_PUMP_1, CONFIG_WATERING_MAX_DURATION_MS); motor_set_max_runtime(MOTOR_PUMP_2, CONFIG_WATERING_MAX_DURATION_MS); motor_set_min_interval(MOTOR_PUMP_1, CONFIG_WATERING_MIN_INTERVAL_MS); motor_set_min_interval(MOTOR_PUMP_2, CONFIG_WATERING_MIN_INTERVAL_MS); // Subscribe to additional MQTT topics after connection static const char* additional_topics[] = { "plant_watering/pump/+/speed", "plant_watering/commands/test_pump/+", "plant_watering/commands/emergency_stop", "plant_watering/settings/+/+", NULL }; // This would need to be done after MQTT connection // You might want to add this to the mqtt_connected_callback // Start WiFi connection esp_err_t ret = wifi_manager_start(); if (ret != ESP_OK) { ESP_LOGE(TAG, "Failed to start WiFi manager"); } // Create sensor simulation task xTaskCreate(sensor_simulation_task, "sensor_sim", 4096, NULL, 5, NULL); // Create automation demo task (disabled by default) xTaskCreate(automation_demo_task, "automation", 4096, NULL, 4, NULL); // Main loop - monitor system status while (1) { ESP_LOGI(TAG, "System Status - WiFi: %s, MQTT: %s, Free heap: %d bytes", wifi_manager_is_connected() ? "Connected" : "Disconnected", mqtt_client_is_connected() ? "Connected" : "Disconnected", esp_get_free_heap_size()); // Print pump states and runtime if (mqtt_client_is_connected()) { for (int i = 1; i <= 2; i++) { motor_stats_t stats; motor_get_stats(i, &stats); const char *state_str = "OFF"; if (motor_is_running(i)) { state_str = "ON"; } else if (motor_is_cooldown(i)) { state_str = "COOLDOWN"; } ESP_LOGI(TAG, "Pump %d: %s, Total runtime: %lu s, Runs: %lu", i, state_str, stats.total_runtime_ms / 1000, stats.run_count); } } vTaskDelay(30000 / portTICK_PERIOD_MS); // Every 30 seconds } }