Add motor control files

This commit is contained in:
2025-07-17 21:13:28 -06:00
parent 5fd11369cc
commit 18e4041514
8 changed files with 1598 additions and 29 deletions

712
main/motor_control.c Normal file
View File

@ -0,0 +1,712 @@
#include <string.h>
#include <sys/time.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#include "freertos/semphr.h"
#include "driver/gpio.h"
#include "driver/ledc.h"
#include "esp_log.h"
#include "esp_timer.h"
#include "nvs_flash.h"
#include "nvs.h"
#include "motor_control.h"
static const char *TAG = "MOTOR_CONTROL";
// Motor control structure
typedef struct {
motor_state_t state;
motor_dir_t direction;
uint8_t speed_percent;
uint8_t target_speed;
uint32_t max_runtime_ms;
uint32_t min_interval_ms;
uint8_t min_speed_percent;
uint8_t max_speed_percent;
// Runtime tracking
int64_t start_time;
int64_t last_stop_time;
TimerHandle_t safety_timer;
TimerHandle_t soft_start_timer;
// Statistics
motor_stats_t stats;
// GPIO pins
gpio_num_t in1_gpio;
gpio_num_t in2_gpio;
ledc_channel_t pwm_channel;
} motor_t;
// Global state
static motor_t s_motors[MOTOR_PUMP_MAX];
static SemaphoreHandle_t s_motor_mutex = NULL;
static bool s_initialized = false;
// Callbacks
static motor_state_callback_t s_state_callback = NULL;
static motor_error_callback_t s_error_callback = NULL;
// NVS namespace
#define MOTOR_NVS_NAMESPACE "motor_stats"
// Forward declarations
static esp_err_t motor_set_direction(motor_id_t id, motor_dir_t dir);
static esp_err_t motor_update_pwm(motor_id_t id, uint8_t duty);
static void motor_safety_timer_callback(TimerHandle_t xTimer);
static void motor_soft_start_timer_callback(TimerHandle_t xTimer);
static esp_err_t motor_save_stats(motor_id_t id);
static esp_err_t motor_load_stats(motor_id_t id);
static void motor_update_state(motor_id_t id, motor_state_t new_state);
// Utility functions
static int64_t get_time_ms(void)
{
return esp_timer_get_time() / 1000;
}
static bool is_valid_motor_id(motor_id_t id)
{
return (id == MOTOR_PUMP_1 || id == MOTOR_PUMP_2);
}
esp_err_t motor_control_init(void)
{
if (s_initialized) {
ESP_LOGW(TAG, "Motor control already initialized");
return ESP_OK;
}
esp_err_t ret = ESP_OK;
// Create mutex
s_motor_mutex = xSemaphoreCreateMutex();
if (s_motor_mutex == NULL) {
ESP_LOGE(TAG, "Failed to create mutex");
return ESP_ERR_NO_MEM;
}
// Configure standby pin (active low, so HIGH = enabled)
gpio_config_t io_conf = {
.mode = GPIO_MODE_OUTPUT,
.pin_bit_mask = (1ULL << MOTOR_STBY_GPIO),
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.pull_up_en = GPIO_PULLUP_DISABLE,
};
ret = gpio_config(&io_conf);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to configure STBY pin");
goto error;
}
// Disable motors initially
gpio_set_level(MOTOR_STBY_GPIO, 0);
// Configure direction pins for both motors
io_conf.pin_bit_mask = (1ULL << MOTOR_AIN1_GPIO) | (1ULL << MOTOR_AIN2_GPIO) |
(1ULL << MOTOR_BIN1_GPIO) | (1ULL << MOTOR_BIN2_GPIO);
ret = gpio_config(&io_conf);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to configure direction pins");
goto error;
}
// Configure LEDC for PWM
ledc_timer_config_t ledc_timer = {
.speed_mode = LEDC_LOW_SPEED_MODE,
.timer_num = LEDC_TIMER_0,
.duty_resolution = MOTOR_PWM_RESOLUTION,
.freq_hz = MOTOR_PWM_FREQ_HZ,
.clk_cfg = LEDC_AUTO_CLK
};
ret = ledc_timer_config(&ledc_timer);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to configure LEDC timer");
goto error;
}
// Configure PWM channels
ledc_channel_config_t ledc_channel[2] = {
{
.speed_mode = LEDC_LOW_SPEED_MODE,
.channel = LEDC_CHANNEL_0,
.timer_sel = LEDC_TIMER_0,
.gpio_num = MOTOR_PWMA_GPIO,
.duty = 0,
.hpoint = 0
},
{
.speed_mode = LEDC_LOW_SPEED_MODE,
.channel = LEDC_CHANNEL_1,
.timer_sel = LEDC_TIMER_0,
.gpio_num = MOTOR_PWMB_GPIO,
.duty = 0,
.hpoint = 0
}
};
for (int i = 0; i < 2; i++) {
ret = ledc_channel_config(&ledc_channel[i]);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to configure LEDC channel %d", i);
goto error;
}
}
// Initialize motor structures
memset(s_motors, 0, sizeof(s_motors));
// Motor 1 (Pump 1)
s_motors[0].in1_gpio = MOTOR_AIN1_GPIO;
s_motors[0].in2_gpio = MOTOR_AIN2_GPIO;
s_motors[0].pwm_channel = LEDC_CHANNEL_0;
s_motors[0].max_runtime_ms = MOTOR_MAX_RUNTIME_MS;
s_motors[0].min_interval_ms = MOTOR_MIN_INTERVAL_MS;
s_motors[0].min_speed_percent = MOTOR_MIN_SPEED;
s_motors[0].max_speed_percent = 100;
s_motors[0].state = MOTOR_STATE_STOPPED;
s_motors[0].direction = MOTOR_DIR_FORWARD;
// Motor 2 (Pump 2)
s_motors[1].in1_gpio = MOTOR_BIN1_GPIO;
s_motors[1].in2_gpio = MOTOR_BIN2_GPIO;
s_motors[1].pwm_channel = LEDC_CHANNEL_1;
s_motors[1].max_runtime_ms = MOTOR_MAX_RUNTIME_MS;
s_motors[1].min_interval_ms = MOTOR_MIN_INTERVAL_MS;
s_motors[1].min_speed_percent = MOTOR_MIN_SPEED;
s_motors[1].max_speed_percent = 100;
s_motors[1].state = MOTOR_STATE_STOPPED;
s_motors[1].direction = MOTOR_DIR_FORWARD;
// Create safety timers
for (int i = 0; i < MOTOR_PUMP_MAX - 1; i++) {
s_motors[i].safety_timer = xTimerCreate("motor_safety",
pdMS_TO_TICKS(1000),
pdFALSE,
(void*)(i + 1),
motor_safety_timer_callback);
if (s_motors[i].safety_timer == NULL) {
ESP_LOGE(TAG, "Failed to create safety timer for motor %d", i + 1);
ret = ESP_ERR_NO_MEM;
goto error;
}
s_motors[i].soft_start_timer = xTimerCreate("motor_soft_start",
pdMS_TO_TICKS(50),
pdTRUE,
(void*)(i + 1),
motor_soft_start_timer_callback);
if (s_motors[i].soft_start_timer == NULL) {
ESP_LOGE(TAG, "Failed to create soft start timer for motor %d", i + 1);
ret = ESP_ERR_NO_MEM;
goto error;
}
}
// Load statistics from NVS
for (int i = 0; i < MOTOR_PUMP_MAX - 1; i++) {
motor_load_stats(i + 1);
}
// Enable motor driver
gpio_set_level(MOTOR_STBY_GPIO, 1);
s_initialized = true;
ESP_LOGI(TAG, "Motor control initialized successfully");
return ESP_OK;
error:
if (s_motor_mutex) {
vSemaphoreDelete(s_motor_mutex);
s_motor_mutex = NULL;
}
return ret;
}
esp_err_t motor_control_deinit(void)
{
if (!s_initialized) {
return ESP_OK;
}
// Stop all motors
motor_stop_all();
// Disable motor driver
gpio_set_level(MOTOR_STBY_GPIO, 0);
// Delete timers
for (int i = 0; i < MOTOR_PUMP_MAX - 1; i++) {
if (s_motors[i].safety_timer) {
xTimerDelete(s_motors[i].safety_timer, 0);
}
if (s_motors[i].soft_start_timer) {
xTimerDelete(s_motors[i].soft_start_timer, 0);
}
}
// Delete mutex
if (s_motor_mutex) {
vSemaphoreDelete(s_motor_mutex);
s_motor_mutex = NULL;
}
s_initialized = false;
ESP_LOGI(TAG, "Motor control deinitialized");
return ESP_OK;
}
static esp_err_t motor_set_direction(motor_id_t id, motor_dir_t dir)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
motor_t *motor = &s_motors[id - 1];
if (dir == MOTOR_DIR_FORWARD) {
gpio_set_level(motor->in1_gpio, 1);
gpio_set_level(motor->in2_gpio, 0);
} else {
gpio_set_level(motor->in1_gpio, 0);
gpio_set_level(motor->in2_gpio, 1);
}
motor->direction = dir;
return ESP_OK;
}
static esp_err_t motor_update_pwm(motor_id_t id, uint8_t duty)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
motor_t *motor = &s_motors[id - 1];
esp_err_t ret = ledc_set_duty(LEDC_LOW_SPEED_MODE, motor->pwm_channel, duty);
if (ret != ESP_OK) {
return ret;
}
return ledc_update_duty(LEDC_LOW_SPEED_MODE, motor->pwm_channel);
}
static void motor_update_state(motor_id_t id, motor_state_t new_state)
{
motor_t *motor = &s_motors[id - 1];
motor_state_t old_state = motor->state;
motor->state = new_state;
if (old_state != new_state && s_state_callback) {
s_state_callback(id, new_state);
}
}
esp_err_t motor_start(motor_id_t id, uint8_t speed_percent)
{
if (!s_initialized) {
return ESP_ERR_INVALID_STATE;
}
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
motor_t *motor = &s_motors[id - 1];
// Check if already running
if (motor->state == MOTOR_STATE_RUNNING) {
xSemaphoreGive(s_motor_mutex);
ESP_LOGW(TAG, "Motor %d already running", id);
return ESP_OK;
}
// Check cooldown period
int64_t now = get_time_ms();
if (motor->last_stop_time > 0) {
int64_t elapsed = now - motor->last_stop_time;
if (elapsed < motor->min_interval_ms) {
motor_update_state(id, MOTOR_STATE_COOLDOWN);
xSemaphoreGive(s_motor_mutex);
if (s_error_callback) {
s_error_callback(id, "Cooldown period not elapsed");
}
ESP_LOGW(TAG, "Motor %d in cooldown, %lld ms remaining",
id, motor->min_interval_ms - elapsed);
return ESP_ERR_INVALID_STATE;
}
}
// Clamp speed to configured limits
if (speed_percent < motor->min_speed_percent) {
speed_percent = motor->min_speed_percent;
}
if (speed_percent > motor->max_speed_percent) {
speed_percent = motor->max_speed_percent;
}
// Set direction
motor_set_direction(id, motor->direction);
// Store target speed for soft start
motor->target_speed = speed_percent;
motor->speed_percent = 0;
// Start with 0 PWM for soft start
motor_update_pwm(id, 0);
// Record start time
motor->start_time = now;
motor_update_state(id, MOTOR_STATE_RUNNING);
// Start soft start timer
xTimerStart(motor->soft_start_timer, 0);
// Start safety timer
xTimerChangePeriod(motor->safety_timer, pdMS_TO_TICKS(motor->max_runtime_ms), 0);
xTimerStart(motor->safety_timer, 0);
xSemaphoreGive(s_motor_mutex);
ESP_LOGI(TAG, "Motor %d started at %d%% speed", id, speed_percent);
return ESP_OK;
}
esp_err_t motor_stop(motor_id_t id)
{
if (!s_initialized) {
return ESP_ERR_INVALID_STATE;
}
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
motor_t *motor = &s_motors[id - 1];
// Stop timers
xTimerStop(motor->safety_timer, 0);
xTimerStop(motor->soft_start_timer, 0);
// Set PWM to 0
motor_update_pwm(id, 0);
motor->speed_percent = 0;
// Update runtime statistics
if (motor->state == MOTOR_STATE_RUNNING) {
int64_t runtime = get_time_ms() - motor->start_time;
motor->stats.last_run_duration_ms = runtime;
motor->stats.total_runtime_ms += runtime;
motor->stats.last_run_timestamp = motor->start_time;
motor->stats.run_count++;
// Save stats to NVS periodically (every 10 runs)
if (motor->stats.run_count % 10 == 0) {
motor_save_stats(id);
}
}
motor->last_stop_time = get_time_ms();
motor_update_state(id, MOTOR_STATE_STOPPED);
xSemaphoreGive(s_motor_mutex);
ESP_LOGI(TAG, "Motor %d stopped", id);
return ESP_OK;
}
esp_err_t motor_stop_all(void)
{
esp_err_t ret = ESP_OK;
for (motor_id_t id = MOTOR_PUMP_1; id < MOTOR_PUMP_MAX; id++) {
esp_err_t err = motor_stop(id);
if (err != ESP_OK) {
ret = err;
}
}
return ret;
}
esp_err_t motor_emergency_stop(void)
{
if (!s_initialized) {
return ESP_ERR_INVALID_STATE;
}
// Disable motor driver immediately
gpio_set_level(MOTOR_STBY_GPIO, 0);
// Stop all motors
motor_stop_all();
// Re-enable motor driver
gpio_set_level(MOTOR_STBY_GPIO, 1);
ESP_LOGW(TAG, "Emergency stop executed");
return ESP_OK;
}
esp_err_t motor_start_timed(motor_id_t id, uint8_t speed_percent, uint32_t duration_ms)
{
if (duration_ms > MOTOR_MAX_RUNTIME_MS) {
duration_ms = MOTOR_MAX_RUNTIME_MS;
}
esp_err_t ret = motor_start(id, speed_percent);
if (ret != ESP_OK) {
return ret;
}
// Override the safety timer with the requested duration
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
xTimerChangePeriod(s_motors[id - 1].safety_timer, pdMS_TO_TICKS(duration_ms), 0);
xSemaphoreGive(s_motor_mutex);
return ESP_OK;
}
esp_err_t motor_set_speed(motor_id_t id, uint8_t speed_percent)
{
if (!s_initialized) {
return ESP_ERR_INVALID_STATE;
}
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
motor_t *motor = &s_motors[id - 1];
if (motor->state != MOTOR_STATE_RUNNING) {
xSemaphoreGive(s_motor_mutex);
return ESP_ERR_INVALID_STATE;
}
// Clamp speed
if (speed_percent < motor->min_speed_percent) {
speed_percent = motor->min_speed_percent;
}
if (speed_percent > motor->max_speed_percent) {
speed_percent = motor->max_speed_percent;
}
motor->speed_percent = speed_percent;
motor->target_speed = speed_percent;
uint8_t duty = (speed_percent * MOTOR_PWM_MAX_DUTY) / 100;
motor_update_pwm(id, duty);
xSemaphoreGive(s_motor_mutex);
return ESP_OK;
}
motor_state_t motor_get_state(motor_id_t id)
{
if (!is_valid_motor_id(id)) {
return MOTOR_STATE_ERROR;
}
return s_motors[id - 1].state;
}
bool motor_is_running(motor_id_t id)
{
return motor_get_state(id) == MOTOR_STATE_RUNNING;
}
bool motor_is_cooldown(motor_id_t id)
{
if (!is_valid_motor_id(id)) {
return false;
}
motor_t *motor = &s_motors[id - 1];
if (motor->last_stop_time == 0) {
return false;
}
int64_t elapsed = get_time_ms() - motor->last_stop_time;
return elapsed < motor->min_interval_ms;
}
uint32_t motor_get_runtime_ms(motor_id_t id)
{
if (!is_valid_motor_id(id)) {
return 0;
}
motor_t *motor = &s_motors[id - 1];
if (motor->state == MOTOR_STATE_RUNNING) {
return get_time_ms() - motor->start_time;
}
return 0;
}
esp_err_t motor_get_stats(motor_id_t id, motor_stats_t *stats)
{
if (!is_valid_motor_id(id) || stats == NULL) {
return ESP_ERR_INVALID_ARG;
}
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
memcpy(stats, &s_motors[id - 1].stats, sizeof(motor_stats_t));
xSemaphoreGive(s_motor_mutex);
return ESP_OK;
}
esp_err_t motor_set_max_runtime(motor_id_t id, uint32_t max_runtime_ms)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
s_motors[id - 1].max_runtime_ms = max_runtime_ms;
return ESP_OK;
}
esp_err_t motor_set_min_interval(motor_id_t id, uint32_t min_interval_ms)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
s_motors[id - 1].min_interval_ms = min_interval_ms;
return ESP_OK;
}
esp_err_t motor_set_speed_limits(motor_id_t id, uint8_t min_speed, uint8_t max_speed)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
if (min_speed > max_speed || max_speed > 100) {
return ESP_ERR_INVALID_ARG;
}
s_motors[id - 1].min_speed_percent = min_speed;
s_motors[id - 1].max_speed_percent = max_speed;
return ESP_OK;
}
void motor_register_state_callback(motor_state_callback_t callback)
{
s_state_callback = callback;
}
void motor_register_error_callback(motor_error_callback_t callback)
{
s_error_callback = callback;
}
esp_err_t motor_test_run(motor_id_t id, uint32_t duration_ms)
{
ESP_LOGI(TAG, "Starting test run for motor %d, duration: %lu ms", id, duration_ms);
return motor_start_timed(id, MOTOR_DEFAULT_SPEED, duration_ms);
}
// Timer callbacks
static void motor_safety_timer_callback(TimerHandle_t xTimer)
{
motor_id_t id = (motor_id_t)(intptr_t)pvTimerGetTimerID(xTimer);
ESP_LOGW(TAG, "Safety timer expired for motor %d", id);
motor_stop(id);
if (s_error_callback) {
s_error_callback(id, "Maximum runtime exceeded");
}
}
static void motor_soft_start_timer_callback(TimerHandle_t xTimer)
{
motor_id_t id = (motor_id_t)(intptr_t)pvTimerGetTimerID(xTimer);
motor_t *motor = &s_motors[id - 1];
if (motor->state != MOTOR_STATE_RUNNING) {
xTimerStop(xTimer, 0);
return;
}
// Ramp up speed
if (motor->speed_percent < motor->target_speed) {
motor->speed_percent += 5; // 5% increment
if (motor->speed_percent > motor->target_speed) {
motor->speed_percent = motor->target_speed;
}
uint8_t duty = (motor->speed_percent * MOTOR_PWM_MAX_DUTY) / 100;
motor_update_pwm(id, duty);
// Stop timer when target reached
if (motor->speed_percent >= motor->target_speed) {
xTimerStop(xTimer, 0);
}
}
}
// NVS functions
static esp_err_t motor_save_stats(motor_id_t id)
{
nvs_handle_t nvs_handle;
esp_err_t ret;
char key[16];
ret = nvs_open(MOTOR_NVS_NAMESPACE, NVS_READWRITE, &nvs_handle);
if (ret != ESP_OK) {
return ret;
}
snprintf(key, sizeof(key), "motor%d_stats", id);
ret = nvs_set_blob(nvs_handle, key, &s_motors[id - 1].stats, sizeof(motor_stats_t));
if (ret == ESP_OK) {
nvs_commit(nvs_handle);
}
nvs_close(nvs_handle);
return ret;
}
static esp_err_t motor_load_stats(motor_id_t id)
{
nvs_handle_t nvs_handle;
esp_err_t ret;
char key[16];
size_t length = sizeof(motor_stats_t);
ret = nvs_open(MOTOR_NVS_NAMESPACE, NVS_READONLY, &nvs_handle);
if (ret != ESP_OK) {
return ret;
}
snprintf(key, sizeof(key), "motor%d_stats", id);
ret = nvs_get_blob(nvs_handle, key, &s_motors[id - 1].stats, &length);
nvs_close(nvs_handle);
if (ret == ESP_OK) {
ESP_LOGI(TAG, "Loaded stats for motor %d: total runtime %lu ms, %lu runs",
id, s_motors[id - 1].stats.total_runtime_ms, s_motors[id - 1].stats.run_count);
}
return ret;
}