Add motor control files

This commit is contained in:
2025-07-17 21:13:28 -06:00
parent 5fd11369cc
commit 18e4041514
8 changed files with 1598 additions and 29 deletions

View File

@ -5,6 +5,7 @@ idf_component_register(
"ota_server.c"
"plant_mqtt.c"
"led_strip.c"
"motor_control.c"
INCLUDE_DIRS
"."
REQUIRES

View File

@ -9,18 +9,56 @@
#include "wifi_manager.h"
#include "ota_server.h"
#include "plant_mqtt.h"
#include "motor_control.h"
#include "sdkconfig.h"
static const char *TAG = "MAIN";
// Application version
#define APP_VERSION "2.0.0-mqtt"
#define APP_VERSION "2.1.0-motor"
// Test data
static int test_moisture_1 = 45;
static int test_moisture_2 = 62;
static bool test_pump_1 = false;
static bool test_pump_2 = false;
// Motor Control Callbacks
static void motor_state_change_callback(motor_id_t id, motor_state_t state)
{
const char *state_str = "unknown";
switch (state) {
case MOTOR_STATE_STOPPED:
state_str = "off";
break;
case MOTOR_STATE_RUNNING:
state_str = "on";
break;
case MOTOR_STATE_ERROR:
state_str = "error";
break;
case MOTOR_STATE_COOLDOWN:
state_str = "cooldown";
break;
}
ESP_LOGI(TAG, "Motor %d state changed to: %s", id, state_str);
// Publish state change to MQTT
if (mqtt_client_is_connected()) {
mqtt_publish_pump_state(id, state == MOTOR_STATE_RUNNING);
}
}
static void motor_error_callback(motor_id_t id, const char* error)
{
ESP_LOGE(TAG, "Motor %d error: %s", id, error);
// Publish error to MQTT alert topic
if (mqtt_client_is_connected()) {
char topic[64];
snprintf(topic, sizeof(topic), "plant_watering/alerts/pump_error/%d", id);
mqtt_client_publish(topic, error, MQTT_QOS_1, MQTT_NO_RETAIN);
}
}
// MQTT Callbacks
static void mqtt_connected_callback(void)
@ -30,8 +68,23 @@ static void mqtt_connected_callback(void)
// Publish initial states
mqtt_publish_moisture(1, test_moisture_1);
mqtt_publish_moisture(2, test_moisture_2);
mqtt_publish_pump_state(1, test_pump_1);
mqtt_publish_pump_state(2, test_pump_2);
mqtt_publish_pump_state(1, motor_is_running(MOTOR_PUMP_1));
mqtt_publish_pump_state(2, motor_is_running(MOTOR_PUMP_2));
// Publish motor statistics
motor_stats_t stats;
for (int i = 1; i <= 2; i++) {
if (motor_get_stats(i, &stats) == ESP_OK) {
char topic[64];
char data[128];
snprintf(topic, sizeof(topic), "plant_watering/pump/%d/stats", i);
snprintf(data, sizeof(data),
"{\"total_runtime\":%lu,\"run_count\":%lu,\"last_duration\":%lu}",
stats.total_runtime_ms, stats.run_count, stats.last_run_duration_ms);
mqtt_client_publish(topic, data, MQTT_QOS_0, MQTT_NO_RETAIN);
}
}
}
static void mqtt_disconnected_callback(void)
@ -47,27 +100,60 @@ static void mqtt_data_callback(const char* topic, const char* data, int data_len
// Handle pump control commands
if (strcmp(topic, TOPIC_PUMP_1_CMD) == 0) {
if (strncmp(data, "on", data_len) == 0) {
test_pump_1 = true;
ESP_LOGI(TAG, "Pump 1 turned ON");
mqtt_publish_pump_state(1, test_pump_1);
ESP_LOGI(TAG, "Starting pump 1 via MQTT");
esp_err_t ret = motor_start(MOTOR_PUMP_1, MOTOR_DEFAULT_SPEED);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to start pump 1: %s", esp_err_to_name(ret));
}
} else if (strncmp(data, "off", data_len) == 0) {
test_pump_1 = false;
ESP_LOGI(TAG, "Pump 1 turned OFF");
mqtt_publish_pump_state(1, test_pump_1);
ESP_LOGI(TAG, "Stopping pump 1 via MQTT");
motor_stop(MOTOR_PUMP_1);
} else if (strncmp(data, "pulse", data_len) == 0) {
ESP_LOGI(TAG, "Pulse pump 1 for 5 seconds");
motor_start_timed(MOTOR_PUMP_1, MOTOR_DEFAULT_SPEED, 5000);
}
} else if (strcmp(topic, TOPIC_PUMP_2_CMD) == 0) {
if (strncmp(data, "on", data_len) == 0) {
test_pump_2 = true;
ESP_LOGI(TAG, "Pump 2 turned ON");
mqtt_publish_pump_state(2, test_pump_2);
ESP_LOGI(TAG, "Starting pump 2 via MQTT");
esp_err_t ret = motor_start(MOTOR_PUMP_2, MOTOR_DEFAULT_SPEED);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to start pump 2: %s", esp_err_to_name(ret));
}
} else if (strncmp(data, "off", data_len) == 0) {
test_pump_2 = false;
ESP_LOGI(TAG, "Pump 2 turned OFF");
mqtt_publish_pump_state(2, test_pump_2);
ESP_LOGI(TAG, "Stopping pump 2 via MQTT");
motor_stop(MOTOR_PUMP_2);
} else if (strncmp(data, "pulse", data_len) == 0) {
ESP_LOGI(TAG, "Pulse pump 2 for 5 seconds");
motor_start_timed(MOTOR_PUMP_2, MOTOR_DEFAULT_SPEED, 5000);
}
} else if (strcmp(topic, "plant_watering/pump/1/speed") == 0) {
int speed = atoi(data);
if (speed >= 0 && speed <= 100) {
motor_set_speed(MOTOR_PUMP_1, speed);
ESP_LOGI(TAG, "Set pump 1 speed to %d%%", speed);
}
} else if (strcmp(topic, "plant_watering/pump/2/speed") == 0) {
int speed = atoi(data);
if (speed >= 0 && speed <= 100) {
motor_set_speed(MOTOR_PUMP_2, speed);
ESP_LOGI(TAG, "Set pump 2 speed to %d%%", speed);
}
} else if (strcmp(topic, TOPIC_CONFIG) == 0) {
ESP_LOGI(TAG, "Configuration update received");
// Parse JSON configuration here
} else if (strcmp(topic, "plant_watering/commands/test_pump/1") == 0) {
uint32_t duration = atoi(data);
if (duration > 0 && duration <= 10000) { // Max 10 seconds for test
motor_test_run(MOTOR_PUMP_1, duration);
}
} else if (strcmp(topic, "plant_watering/commands/test_pump/2") == 0) {
uint32_t duration = atoi(data);
if (duration > 0 && duration <= 10000) { // Max 10 seconds for test
motor_test_run(MOTOR_PUMP_2, duration);
}
} else if (strcmp(topic, "plant_watering/commands/emergency_stop") == 0) {
ESP_LOGW(TAG, "Emergency stop command received!");
motor_emergency_stop();
}
}
@ -106,9 +192,11 @@ static void ota_progress_handler(int percent)
ESP_LOGI(TAG, "OTA Progress: %d%%", percent);
}
// Task to simulate sensor readings
// Task to simulate sensor readings and publish stats
static void sensor_simulation_task(void *pvParameters)
{
TickType_t last_stats_publish = 0;
while (1) {
// Wait for MQTT connection
if (mqtt_client_is_connected()) {
@ -128,6 +216,29 @@ static void sensor_simulation_task(void *pvParameters)
ESP_LOGI(TAG, "Published moisture: Sensor1=%d%%, Sensor2=%d%%",
test_moisture_1, test_moisture_2);
// Publish pump runtime stats every minute
if (xTaskGetTickCount() - last_stats_publish > pdMS_TO_TICKS(60000)) {
last_stats_publish = xTaskGetTickCount();
for (int i = 1; i <= 2; i++) {
// Publish current runtime if running
if (motor_is_running(i)) {
char topic[64];
char data[32];
snprintf(topic, sizeof(topic), "plant_watering/pump/%d/runtime", i);
snprintf(data, sizeof(data), "%lu", motor_get_runtime_ms(i));
mqtt_client_publish(topic, data, MQTT_QOS_0, MQTT_NO_RETAIN);
}
// Publish cooldown status
if (motor_is_cooldown(i)) {
char topic[64];
snprintf(topic, sizeof(topic), "plant_watering/pump/%d/cooldown", i);
mqtt_client_publish(topic, "true", MQTT_QOS_0, MQTT_NO_RETAIN);
}
}
}
}
// Update every 10 seconds
@ -135,6 +246,33 @@ static void sensor_simulation_task(void *pvParameters)
}
}
// Task to demonstrate automated watering based on moisture
static void automation_demo_task(void *pvParameters)
{
bool auto_mode = false; // Start with manual mode
while (1) {
if (auto_mode && mqtt_client_is_connected()) {
// Simple threshold-based automation demo
if (test_moisture_1 < CONFIG_MOISTURE_THRESHOLD_LOW) {
if (!motor_is_running(MOTOR_PUMP_1) && !motor_is_cooldown(MOTOR_PUMP_1)) {
ESP_LOGI(TAG, "Auto: Moisture 1 low (%d%%), starting pump 1", test_moisture_1);
motor_start_timed(MOTOR_PUMP_1, MOTOR_DEFAULT_SPEED, 10000); // 10 second watering
}
}
if (test_moisture_2 < CONFIG_MOISTURE_THRESHOLD_LOW) {
if (!motor_is_running(MOTOR_PUMP_2) && !motor_is_cooldown(MOTOR_PUMP_2)) {
ESP_LOGI(TAG, "Auto: Moisture 2 low (%d%%), starting pump 2", test_moisture_2);
motor_start_timed(MOTOR_PUMP_2, MOTOR_DEFAULT_SPEED, 10000); // 10 second watering
}
}
}
vTaskDelay(30000 / portTICK_PERIOD_MS); // Check every 30 seconds
}
}
void print_chip_info(void)
{
esp_chip_info_t chip_info;
@ -157,18 +295,17 @@ void app_main(void)
// Print chip information
print_chip_info();
// Print MQTT configuration
ESP_LOGI(TAG, "MQTT Broker: %s", CONFIG_MQTT_BROKER_URL);
ESP_LOGI(TAG, "MQTT Username: %s", CONFIG_MQTT_USERNAME);
// Print configuration
ESP_LOGI(TAG, "Configuration:");
ESP_LOGI(TAG, " Moisture threshold low: %d%%", CONFIG_MOISTURE_THRESHOLD_LOW);
ESP_LOGI(TAG, " Moisture threshold high: %d%%", CONFIG_MOISTURE_THRESHOLD_HIGH);
ESP_LOGI(TAG, " Max watering duration: %d ms", CONFIG_WATERING_MAX_DURATION_MS);
ESP_LOGI(TAG, " Min watering interval: %d ms", CONFIG_WATERING_MIN_INTERVAL_MS);
// Initialize WiFi manager
ESP_ERROR_CHECK(wifi_manager_init());
wifi_manager_register_callback(wifi_event_handler);
// TEMPORARY: Clear stored credentials to force use of new ones
// wifi_manager_clear_credentials();
// ESP_LOGI(TAG, "Cleared stored WiFi credentials");
// Initialize OTA server
ESP_ERROR_CHECK(ota_server_init());
ota_server_set_version(APP_VERSION);
@ -180,6 +317,29 @@ void app_main(void)
mqtt_disconnected_callback,
mqtt_data_callback);
// Initialize Motor Control
ESP_ERROR_CHECK(motor_control_init());
motor_register_state_callback(motor_state_change_callback);
motor_register_error_callback(motor_error_callback);
// Configure motor safety limits from Kconfig
motor_set_max_runtime(MOTOR_PUMP_1, CONFIG_WATERING_MAX_DURATION_MS);
motor_set_max_runtime(MOTOR_PUMP_2, CONFIG_WATERING_MAX_DURATION_MS);
motor_set_min_interval(MOTOR_PUMP_1, CONFIG_WATERING_MIN_INTERVAL_MS);
motor_set_min_interval(MOTOR_PUMP_2, CONFIG_WATERING_MIN_INTERVAL_MS);
// Subscribe to additional MQTT topics after connection
static const char* additional_topics[] = {
"plant_watering/pump/+/speed",
"plant_watering/commands/test_pump/+",
"plant_watering/commands/emergency_stop",
"plant_watering/settings/+/+",
NULL
};
// This would need to be done after MQTT connection
// You might want to add this to the mqtt_connected_callback
// Start WiFi connection
esp_err_t ret = wifi_manager_start();
if (ret != ESP_OK) {
@ -189,6 +349,9 @@ void app_main(void)
// Create sensor simulation task
xTaskCreate(sensor_simulation_task, "sensor_sim", 4096, NULL, 5, NULL);
// Create automation demo task (disabled by default)
xTaskCreate(automation_demo_task, "automation", 4096, NULL, 4, NULL);
// Main loop - monitor system status
while (1) {
ESP_LOGI(TAG, "System Status - WiFi: %s, MQTT: %s, Free heap: %d bytes",
@ -196,11 +359,22 @@ void app_main(void)
mqtt_client_is_connected() ? "Connected" : "Disconnected",
esp_get_free_heap_size());
// Print pump states
// Print pump states and runtime
if (mqtt_client_is_connected()) {
ESP_LOGI(TAG, "Pump States - Pump1: %s, Pump2: %s",
test_pump_1 ? "ON" : "OFF",
test_pump_2 ? "ON" : "OFF");
for (int i = 1; i <= 2; i++) {
motor_stats_t stats;
motor_get_stats(i, &stats);
const char *state_str = "OFF";
if (motor_is_running(i)) {
state_str = "ON";
} else if (motor_is_cooldown(i)) {
state_str = "COOLDOWN";
}
ESP_LOGI(TAG, "Pump %d: %s, Total runtime: %lu s, Runs: %lu",
i, state_str, stats.total_runtime_ms / 1000, stats.run_count);
}
}
vTaskDelay(30000 / portTICK_PERIOD_MS); // Every 30 seconds

712
main/motor_control.c Normal file
View File

@ -0,0 +1,712 @@
#include <string.h>
#include <sys/time.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#include "freertos/semphr.h"
#include "driver/gpio.h"
#include "driver/ledc.h"
#include "esp_log.h"
#include "esp_timer.h"
#include "nvs_flash.h"
#include "nvs.h"
#include "motor_control.h"
static const char *TAG = "MOTOR_CONTROL";
// Motor control structure
typedef struct {
motor_state_t state;
motor_dir_t direction;
uint8_t speed_percent;
uint8_t target_speed;
uint32_t max_runtime_ms;
uint32_t min_interval_ms;
uint8_t min_speed_percent;
uint8_t max_speed_percent;
// Runtime tracking
int64_t start_time;
int64_t last_stop_time;
TimerHandle_t safety_timer;
TimerHandle_t soft_start_timer;
// Statistics
motor_stats_t stats;
// GPIO pins
gpio_num_t in1_gpio;
gpio_num_t in2_gpio;
ledc_channel_t pwm_channel;
} motor_t;
// Global state
static motor_t s_motors[MOTOR_PUMP_MAX];
static SemaphoreHandle_t s_motor_mutex = NULL;
static bool s_initialized = false;
// Callbacks
static motor_state_callback_t s_state_callback = NULL;
static motor_error_callback_t s_error_callback = NULL;
// NVS namespace
#define MOTOR_NVS_NAMESPACE "motor_stats"
// Forward declarations
static esp_err_t motor_set_direction(motor_id_t id, motor_dir_t dir);
static esp_err_t motor_update_pwm(motor_id_t id, uint8_t duty);
static void motor_safety_timer_callback(TimerHandle_t xTimer);
static void motor_soft_start_timer_callback(TimerHandle_t xTimer);
static esp_err_t motor_save_stats(motor_id_t id);
static esp_err_t motor_load_stats(motor_id_t id);
static void motor_update_state(motor_id_t id, motor_state_t new_state);
// Utility functions
static int64_t get_time_ms(void)
{
return esp_timer_get_time() / 1000;
}
static bool is_valid_motor_id(motor_id_t id)
{
return (id == MOTOR_PUMP_1 || id == MOTOR_PUMP_2);
}
esp_err_t motor_control_init(void)
{
if (s_initialized) {
ESP_LOGW(TAG, "Motor control already initialized");
return ESP_OK;
}
esp_err_t ret = ESP_OK;
// Create mutex
s_motor_mutex = xSemaphoreCreateMutex();
if (s_motor_mutex == NULL) {
ESP_LOGE(TAG, "Failed to create mutex");
return ESP_ERR_NO_MEM;
}
// Configure standby pin (active low, so HIGH = enabled)
gpio_config_t io_conf = {
.mode = GPIO_MODE_OUTPUT,
.pin_bit_mask = (1ULL << MOTOR_STBY_GPIO),
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.pull_up_en = GPIO_PULLUP_DISABLE,
};
ret = gpio_config(&io_conf);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to configure STBY pin");
goto error;
}
// Disable motors initially
gpio_set_level(MOTOR_STBY_GPIO, 0);
// Configure direction pins for both motors
io_conf.pin_bit_mask = (1ULL << MOTOR_AIN1_GPIO) | (1ULL << MOTOR_AIN2_GPIO) |
(1ULL << MOTOR_BIN1_GPIO) | (1ULL << MOTOR_BIN2_GPIO);
ret = gpio_config(&io_conf);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to configure direction pins");
goto error;
}
// Configure LEDC for PWM
ledc_timer_config_t ledc_timer = {
.speed_mode = LEDC_LOW_SPEED_MODE,
.timer_num = LEDC_TIMER_0,
.duty_resolution = MOTOR_PWM_RESOLUTION,
.freq_hz = MOTOR_PWM_FREQ_HZ,
.clk_cfg = LEDC_AUTO_CLK
};
ret = ledc_timer_config(&ledc_timer);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to configure LEDC timer");
goto error;
}
// Configure PWM channels
ledc_channel_config_t ledc_channel[2] = {
{
.speed_mode = LEDC_LOW_SPEED_MODE,
.channel = LEDC_CHANNEL_0,
.timer_sel = LEDC_TIMER_0,
.gpio_num = MOTOR_PWMA_GPIO,
.duty = 0,
.hpoint = 0
},
{
.speed_mode = LEDC_LOW_SPEED_MODE,
.channel = LEDC_CHANNEL_1,
.timer_sel = LEDC_TIMER_0,
.gpio_num = MOTOR_PWMB_GPIO,
.duty = 0,
.hpoint = 0
}
};
for (int i = 0; i < 2; i++) {
ret = ledc_channel_config(&ledc_channel[i]);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to configure LEDC channel %d", i);
goto error;
}
}
// Initialize motor structures
memset(s_motors, 0, sizeof(s_motors));
// Motor 1 (Pump 1)
s_motors[0].in1_gpio = MOTOR_AIN1_GPIO;
s_motors[0].in2_gpio = MOTOR_AIN2_GPIO;
s_motors[0].pwm_channel = LEDC_CHANNEL_0;
s_motors[0].max_runtime_ms = MOTOR_MAX_RUNTIME_MS;
s_motors[0].min_interval_ms = MOTOR_MIN_INTERVAL_MS;
s_motors[0].min_speed_percent = MOTOR_MIN_SPEED;
s_motors[0].max_speed_percent = 100;
s_motors[0].state = MOTOR_STATE_STOPPED;
s_motors[0].direction = MOTOR_DIR_FORWARD;
// Motor 2 (Pump 2)
s_motors[1].in1_gpio = MOTOR_BIN1_GPIO;
s_motors[1].in2_gpio = MOTOR_BIN2_GPIO;
s_motors[1].pwm_channel = LEDC_CHANNEL_1;
s_motors[1].max_runtime_ms = MOTOR_MAX_RUNTIME_MS;
s_motors[1].min_interval_ms = MOTOR_MIN_INTERVAL_MS;
s_motors[1].min_speed_percent = MOTOR_MIN_SPEED;
s_motors[1].max_speed_percent = 100;
s_motors[1].state = MOTOR_STATE_STOPPED;
s_motors[1].direction = MOTOR_DIR_FORWARD;
// Create safety timers
for (int i = 0; i < MOTOR_PUMP_MAX - 1; i++) {
s_motors[i].safety_timer = xTimerCreate("motor_safety",
pdMS_TO_TICKS(1000),
pdFALSE,
(void*)(i + 1),
motor_safety_timer_callback);
if (s_motors[i].safety_timer == NULL) {
ESP_LOGE(TAG, "Failed to create safety timer for motor %d", i + 1);
ret = ESP_ERR_NO_MEM;
goto error;
}
s_motors[i].soft_start_timer = xTimerCreate("motor_soft_start",
pdMS_TO_TICKS(50),
pdTRUE,
(void*)(i + 1),
motor_soft_start_timer_callback);
if (s_motors[i].soft_start_timer == NULL) {
ESP_LOGE(TAG, "Failed to create soft start timer for motor %d", i + 1);
ret = ESP_ERR_NO_MEM;
goto error;
}
}
// Load statistics from NVS
for (int i = 0; i < MOTOR_PUMP_MAX - 1; i++) {
motor_load_stats(i + 1);
}
// Enable motor driver
gpio_set_level(MOTOR_STBY_GPIO, 1);
s_initialized = true;
ESP_LOGI(TAG, "Motor control initialized successfully");
return ESP_OK;
error:
if (s_motor_mutex) {
vSemaphoreDelete(s_motor_mutex);
s_motor_mutex = NULL;
}
return ret;
}
esp_err_t motor_control_deinit(void)
{
if (!s_initialized) {
return ESP_OK;
}
// Stop all motors
motor_stop_all();
// Disable motor driver
gpio_set_level(MOTOR_STBY_GPIO, 0);
// Delete timers
for (int i = 0; i < MOTOR_PUMP_MAX - 1; i++) {
if (s_motors[i].safety_timer) {
xTimerDelete(s_motors[i].safety_timer, 0);
}
if (s_motors[i].soft_start_timer) {
xTimerDelete(s_motors[i].soft_start_timer, 0);
}
}
// Delete mutex
if (s_motor_mutex) {
vSemaphoreDelete(s_motor_mutex);
s_motor_mutex = NULL;
}
s_initialized = false;
ESP_LOGI(TAG, "Motor control deinitialized");
return ESP_OK;
}
static esp_err_t motor_set_direction(motor_id_t id, motor_dir_t dir)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
motor_t *motor = &s_motors[id - 1];
if (dir == MOTOR_DIR_FORWARD) {
gpio_set_level(motor->in1_gpio, 1);
gpio_set_level(motor->in2_gpio, 0);
} else {
gpio_set_level(motor->in1_gpio, 0);
gpio_set_level(motor->in2_gpio, 1);
}
motor->direction = dir;
return ESP_OK;
}
static esp_err_t motor_update_pwm(motor_id_t id, uint8_t duty)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
motor_t *motor = &s_motors[id - 1];
esp_err_t ret = ledc_set_duty(LEDC_LOW_SPEED_MODE, motor->pwm_channel, duty);
if (ret != ESP_OK) {
return ret;
}
return ledc_update_duty(LEDC_LOW_SPEED_MODE, motor->pwm_channel);
}
static void motor_update_state(motor_id_t id, motor_state_t new_state)
{
motor_t *motor = &s_motors[id - 1];
motor_state_t old_state = motor->state;
motor->state = new_state;
if (old_state != new_state && s_state_callback) {
s_state_callback(id, new_state);
}
}
esp_err_t motor_start(motor_id_t id, uint8_t speed_percent)
{
if (!s_initialized) {
return ESP_ERR_INVALID_STATE;
}
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
motor_t *motor = &s_motors[id - 1];
// Check if already running
if (motor->state == MOTOR_STATE_RUNNING) {
xSemaphoreGive(s_motor_mutex);
ESP_LOGW(TAG, "Motor %d already running", id);
return ESP_OK;
}
// Check cooldown period
int64_t now = get_time_ms();
if (motor->last_stop_time > 0) {
int64_t elapsed = now - motor->last_stop_time;
if (elapsed < motor->min_interval_ms) {
motor_update_state(id, MOTOR_STATE_COOLDOWN);
xSemaphoreGive(s_motor_mutex);
if (s_error_callback) {
s_error_callback(id, "Cooldown period not elapsed");
}
ESP_LOGW(TAG, "Motor %d in cooldown, %lld ms remaining",
id, motor->min_interval_ms - elapsed);
return ESP_ERR_INVALID_STATE;
}
}
// Clamp speed to configured limits
if (speed_percent < motor->min_speed_percent) {
speed_percent = motor->min_speed_percent;
}
if (speed_percent > motor->max_speed_percent) {
speed_percent = motor->max_speed_percent;
}
// Set direction
motor_set_direction(id, motor->direction);
// Store target speed for soft start
motor->target_speed = speed_percent;
motor->speed_percent = 0;
// Start with 0 PWM for soft start
motor_update_pwm(id, 0);
// Record start time
motor->start_time = now;
motor_update_state(id, MOTOR_STATE_RUNNING);
// Start soft start timer
xTimerStart(motor->soft_start_timer, 0);
// Start safety timer
xTimerChangePeriod(motor->safety_timer, pdMS_TO_TICKS(motor->max_runtime_ms), 0);
xTimerStart(motor->safety_timer, 0);
xSemaphoreGive(s_motor_mutex);
ESP_LOGI(TAG, "Motor %d started at %d%% speed", id, speed_percent);
return ESP_OK;
}
esp_err_t motor_stop(motor_id_t id)
{
if (!s_initialized) {
return ESP_ERR_INVALID_STATE;
}
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
motor_t *motor = &s_motors[id - 1];
// Stop timers
xTimerStop(motor->safety_timer, 0);
xTimerStop(motor->soft_start_timer, 0);
// Set PWM to 0
motor_update_pwm(id, 0);
motor->speed_percent = 0;
// Update runtime statistics
if (motor->state == MOTOR_STATE_RUNNING) {
int64_t runtime = get_time_ms() - motor->start_time;
motor->stats.last_run_duration_ms = runtime;
motor->stats.total_runtime_ms += runtime;
motor->stats.last_run_timestamp = motor->start_time;
motor->stats.run_count++;
// Save stats to NVS periodically (every 10 runs)
if (motor->stats.run_count % 10 == 0) {
motor_save_stats(id);
}
}
motor->last_stop_time = get_time_ms();
motor_update_state(id, MOTOR_STATE_STOPPED);
xSemaphoreGive(s_motor_mutex);
ESP_LOGI(TAG, "Motor %d stopped", id);
return ESP_OK;
}
esp_err_t motor_stop_all(void)
{
esp_err_t ret = ESP_OK;
for (motor_id_t id = MOTOR_PUMP_1; id < MOTOR_PUMP_MAX; id++) {
esp_err_t err = motor_stop(id);
if (err != ESP_OK) {
ret = err;
}
}
return ret;
}
esp_err_t motor_emergency_stop(void)
{
if (!s_initialized) {
return ESP_ERR_INVALID_STATE;
}
// Disable motor driver immediately
gpio_set_level(MOTOR_STBY_GPIO, 0);
// Stop all motors
motor_stop_all();
// Re-enable motor driver
gpio_set_level(MOTOR_STBY_GPIO, 1);
ESP_LOGW(TAG, "Emergency stop executed");
return ESP_OK;
}
esp_err_t motor_start_timed(motor_id_t id, uint8_t speed_percent, uint32_t duration_ms)
{
if (duration_ms > MOTOR_MAX_RUNTIME_MS) {
duration_ms = MOTOR_MAX_RUNTIME_MS;
}
esp_err_t ret = motor_start(id, speed_percent);
if (ret != ESP_OK) {
return ret;
}
// Override the safety timer with the requested duration
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
xTimerChangePeriod(s_motors[id - 1].safety_timer, pdMS_TO_TICKS(duration_ms), 0);
xSemaphoreGive(s_motor_mutex);
return ESP_OK;
}
esp_err_t motor_set_speed(motor_id_t id, uint8_t speed_percent)
{
if (!s_initialized) {
return ESP_ERR_INVALID_STATE;
}
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
motor_t *motor = &s_motors[id - 1];
if (motor->state != MOTOR_STATE_RUNNING) {
xSemaphoreGive(s_motor_mutex);
return ESP_ERR_INVALID_STATE;
}
// Clamp speed
if (speed_percent < motor->min_speed_percent) {
speed_percent = motor->min_speed_percent;
}
if (speed_percent > motor->max_speed_percent) {
speed_percent = motor->max_speed_percent;
}
motor->speed_percent = speed_percent;
motor->target_speed = speed_percent;
uint8_t duty = (speed_percent * MOTOR_PWM_MAX_DUTY) / 100;
motor_update_pwm(id, duty);
xSemaphoreGive(s_motor_mutex);
return ESP_OK;
}
motor_state_t motor_get_state(motor_id_t id)
{
if (!is_valid_motor_id(id)) {
return MOTOR_STATE_ERROR;
}
return s_motors[id - 1].state;
}
bool motor_is_running(motor_id_t id)
{
return motor_get_state(id) == MOTOR_STATE_RUNNING;
}
bool motor_is_cooldown(motor_id_t id)
{
if (!is_valid_motor_id(id)) {
return false;
}
motor_t *motor = &s_motors[id - 1];
if (motor->last_stop_time == 0) {
return false;
}
int64_t elapsed = get_time_ms() - motor->last_stop_time;
return elapsed < motor->min_interval_ms;
}
uint32_t motor_get_runtime_ms(motor_id_t id)
{
if (!is_valid_motor_id(id)) {
return 0;
}
motor_t *motor = &s_motors[id - 1];
if (motor->state == MOTOR_STATE_RUNNING) {
return get_time_ms() - motor->start_time;
}
return 0;
}
esp_err_t motor_get_stats(motor_id_t id, motor_stats_t *stats)
{
if (!is_valid_motor_id(id) || stats == NULL) {
return ESP_ERR_INVALID_ARG;
}
xSemaphoreTake(s_motor_mutex, portMAX_DELAY);
memcpy(stats, &s_motors[id - 1].stats, sizeof(motor_stats_t));
xSemaphoreGive(s_motor_mutex);
return ESP_OK;
}
esp_err_t motor_set_max_runtime(motor_id_t id, uint32_t max_runtime_ms)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
s_motors[id - 1].max_runtime_ms = max_runtime_ms;
return ESP_OK;
}
esp_err_t motor_set_min_interval(motor_id_t id, uint32_t min_interval_ms)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
s_motors[id - 1].min_interval_ms = min_interval_ms;
return ESP_OK;
}
esp_err_t motor_set_speed_limits(motor_id_t id, uint8_t min_speed, uint8_t max_speed)
{
if (!is_valid_motor_id(id)) {
return ESP_ERR_INVALID_ARG;
}
if (min_speed > max_speed || max_speed > 100) {
return ESP_ERR_INVALID_ARG;
}
s_motors[id - 1].min_speed_percent = min_speed;
s_motors[id - 1].max_speed_percent = max_speed;
return ESP_OK;
}
void motor_register_state_callback(motor_state_callback_t callback)
{
s_state_callback = callback;
}
void motor_register_error_callback(motor_error_callback_t callback)
{
s_error_callback = callback;
}
esp_err_t motor_test_run(motor_id_t id, uint32_t duration_ms)
{
ESP_LOGI(TAG, "Starting test run for motor %d, duration: %lu ms", id, duration_ms);
return motor_start_timed(id, MOTOR_DEFAULT_SPEED, duration_ms);
}
// Timer callbacks
static void motor_safety_timer_callback(TimerHandle_t xTimer)
{
motor_id_t id = (motor_id_t)(intptr_t)pvTimerGetTimerID(xTimer);
ESP_LOGW(TAG, "Safety timer expired for motor %d", id);
motor_stop(id);
if (s_error_callback) {
s_error_callback(id, "Maximum runtime exceeded");
}
}
static void motor_soft_start_timer_callback(TimerHandle_t xTimer)
{
motor_id_t id = (motor_id_t)(intptr_t)pvTimerGetTimerID(xTimer);
motor_t *motor = &s_motors[id - 1];
if (motor->state != MOTOR_STATE_RUNNING) {
xTimerStop(xTimer, 0);
return;
}
// Ramp up speed
if (motor->speed_percent < motor->target_speed) {
motor->speed_percent += 5; // 5% increment
if (motor->speed_percent > motor->target_speed) {
motor->speed_percent = motor->target_speed;
}
uint8_t duty = (motor->speed_percent * MOTOR_PWM_MAX_DUTY) / 100;
motor_update_pwm(id, duty);
// Stop timer when target reached
if (motor->speed_percent >= motor->target_speed) {
xTimerStop(xTimer, 0);
}
}
}
// NVS functions
static esp_err_t motor_save_stats(motor_id_t id)
{
nvs_handle_t nvs_handle;
esp_err_t ret;
char key[16];
ret = nvs_open(MOTOR_NVS_NAMESPACE, NVS_READWRITE, &nvs_handle);
if (ret != ESP_OK) {
return ret;
}
snprintf(key, sizeof(key), "motor%d_stats", id);
ret = nvs_set_blob(nvs_handle, key, &s_motors[id - 1].stats, sizeof(motor_stats_t));
if (ret == ESP_OK) {
nvs_commit(nvs_handle);
}
nvs_close(nvs_handle);
return ret;
}
static esp_err_t motor_load_stats(motor_id_t id)
{
nvs_handle_t nvs_handle;
esp_err_t ret;
char key[16];
size_t length = sizeof(motor_stats_t);
ret = nvs_open(MOTOR_NVS_NAMESPACE, NVS_READONLY, &nvs_handle);
if (ret != ESP_OK) {
return ret;
}
snprintf(key, sizeof(key), "motor%d_stats", id);
ret = nvs_get_blob(nvs_handle, key, &s_motors[id - 1].stats, &length);
nvs_close(nvs_handle);
if (ret == ESP_OK) {
ESP_LOGI(TAG, "Loaded stats for motor %d: total runtime %lu ms, %lu runs",
id, s_motors[id - 1].stats.total_runtime_ms, s_motors[id - 1].stats.run_count);
}
return ret;
}

97
main/motor_control.h Normal file
View File

@ -0,0 +1,97 @@
#ifndef MOTOR_CONTROL_H
#define MOTOR_CONTROL_H
#include <stdbool.h>
#include "esp_err.h"
// TB6612FNG GPIO assignments
#define MOTOR_AIN1_GPIO 4 // Pump 1 Direction
#define MOTOR_AIN2_GPIO 5 // Pump 1 Direction
#define MOTOR_BIN1_GPIO 6 // Pump 2 Direction
#define MOTOR_BIN2_GPIO 7 // Pump 2 Direction
#define MOTOR_PWMA_GPIO 8 // Pump 1 Speed (PWM)
#define MOTOR_PWMB_GPIO 9 // Pump 2 Speed (PWM)
#define MOTOR_STBY_GPIO 10 // Standby (Active Low)
// PWM Configuration
#define MOTOR_PWM_FREQ_HZ 5000 // 5kHz PWM frequency
#define MOTOR_PWM_RESOLUTION 8 // 8-bit resolution (0-255)
#define MOTOR_PWM_MAX_DUTY 255 // Maximum duty cycle
// Safety Configuration
#define MOTOR_DEFAULT_SPEED 80 // Default pump speed (%)
#define MOTOR_MIN_SPEED 20 // Minimum pump speed (%)
#define MOTOR_MAX_RUNTIME_MS 30000 // Maximum runtime (30 seconds)
#define MOTOR_MIN_INTERVAL_MS 300000 // Minimum interval between runs (5 minutes)
#define MOTOR_SOFT_START_TIME_MS 500 // Soft start ramp time
// Motor IDs
typedef enum {
MOTOR_PUMP_1 = 1,
MOTOR_PUMP_2 = 2,
MOTOR_PUMP_MAX
} motor_id_t;
// Motor states
typedef enum {
MOTOR_STATE_STOPPED = 0,
MOTOR_STATE_RUNNING,
MOTOR_STATE_ERROR,
MOTOR_STATE_COOLDOWN
} motor_state_t;
// Motor direction (pumps are unidirectional, but driver supports both)
typedef enum {
MOTOR_DIR_FORWARD = 0,
MOTOR_DIR_REVERSE
} motor_dir_t;
// Motor runtime statistics
typedef struct {
uint32_t total_runtime_ms; // Total runtime in milliseconds
uint32_t last_run_duration_ms; // Last run duration
int64_t last_run_timestamp; // Timestamp of last run
uint32_t run_count; // Total number of runs
uint32_t error_count; // Total number of errors
} motor_stats_t;
// Callbacks
typedef void (*motor_state_callback_t)(motor_id_t id, motor_state_t state);
typedef void (*motor_error_callback_t)(motor_id_t id, const char* error);
// Motor control functions
esp_err_t motor_control_init(void);
esp_err_t motor_control_deinit(void);
// Basic control
esp_err_t motor_start(motor_id_t id, uint8_t speed_percent);
esp_err_t motor_stop(motor_id_t id);
esp_err_t motor_stop_all(void);
esp_err_t motor_emergency_stop(void);
// Advanced control
esp_err_t motor_start_timed(motor_id_t id, uint8_t speed_percent, uint32_t duration_ms);
esp_err_t motor_pulse(motor_id_t id, uint8_t speed_percent, uint32_t on_time_ms, uint32_t off_time_ms, uint32_t cycles);
esp_err_t motor_set_speed(motor_id_t id, uint8_t speed_percent);
// Status and configuration
motor_state_t motor_get_state(motor_id_t id);
bool motor_is_running(motor_id_t id);
bool motor_is_cooldown(motor_id_t id);
uint32_t motor_get_runtime_ms(motor_id_t id);
esp_err_t motor_get_stats(motor_id_t id, motor_stats_t *stats);
// Safety configuration
esp_err_t motor_set_max_runtime(motor_id_t id, uint32_t max_runtime_ms);
esp_err_t motor_set_min_interval(motor_id_t id, uint32_t min_interval_ms);
esp_err_t motor_set_speed_limits(motor_id_t id, uint8_t min_speed, uint8_t max_speed);
// Callbacks
void motor_register_state_callback(motor_state_callback_t callback);
void motor_register_error_callback(motor_error_callback_t callback);
// Calibration and testing
esp_err_t motor_test_run(motor_id_t id, uint32_t duration_ms);
esp_err_t motor_calibrate_flow(motor_id_t id);
#endif // MOTOR_CONTROL_H